ReLM: Leveraging Language Models for Enhanced Chemical Reaction
Prediction
- URL: http://arxiv.org/abs/2310.13590v1
- Date: Fri, 20 Oct 2023 15:33:23 GMT
- Title: ReLM: Leveraging Language Models for Enhanced Chemical Reaction
Prediction
- Authors: Yaorui Shi, An Zhang, Enzhi Zhang, Zhiyuan Liu, Xiang Wang
- Abstract summary: ReLM is a framework that leverages the chemical knowledge encoded in language models (LMs) to assist Graph Neural Networks (GNNs)
Our experimental results demonstrate that ReLM improves the performance of state-of-the-art GNN-based methods across various chemical reaction datasets.
- Score: 26.342666819515774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting chemical reactions, a fundamental challenge in chemistry, involves
forecasting the resulting products from a given reaction process. Conventional
techniques, notably those employing Graph Neural Networks (GNNs), are often
limited by insufficient training data and their inability to utilize textual
information, undermining their applicability in real-world applications. In
this work, we propose ReLM, a novel framework that leverages the chemical
knowledge encoded in language models (LMs) to assist GNNs, thereby enhancing
the accuracy of real-world chemical reaction predictions. To further enhance
the model's robustness and interpretability, we incorporate the confidence
score strategy, enabling the LMs to self-assess the reliability of their
predictions. Our experimental results demonstrate that ReLM improves the
performance of state-of-the-art GNN-based methods across various chemical
reaction datasets, especially in out-of-distribution settings. Codes are
available at https://github.com/syr-cn/ReLM.
Related papers
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
This paper introduces modelname, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks.
By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism.
We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
We introduce a Multi-Modal Fusion (MMF) framework that harnesses the analytical prowess of Graph Neural Networks (GNNs) and the linguistic generative and predictive abilities of Large Language Models (LLMs)
Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting.
arXiv Detail & Related papers (2024-08-27T11:10:39Z) - Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation [50.639325453203504]
MM-RCR is a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR)
Our results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets.
arXiv Detail & Related papers (2024-07-21T12:27:26Z) - A Self-feedback Knowledge Elicitation Approach for Chemical Reaction Predictions [24.80165173525286]
We introduce a data-curated self-feedback knowledge elicitation approach.
We employ adaptive prompt learning to infuse the prior knowledge into the large language model.
This research offers a novel paradigm for knowledge elicitation in scientific research.
arXiv Detail & Related papers (2024-04-15T09:26:33Z) - Contextual Molecule Representation Learning from Chemical Reaction
Knowledge [24.501564702095937]
We introduce REMO, a self-supervised learning framework that takes advantage of well-defined atom-combination rules in common chemistry.
REMO pre-trains graph/Transformer encoders on 1.7 million known chemical reactions in the literature.
arXiv Detail & Related papers (2024-02-21T12:58:40Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision [27.850325653751078]
structured chemical reaction information plays a vital role for chemists engaged in laboratory work and advanced endeavors such as computer-aided drug design.
Despite the importance of extracting structured reactions from scientific literature, data annotation for this purpose is cost-prohibitive due to the significant labor required from domain experts.
We propose ReactIE, which combines two weakly supervised approaches for pre-training. Our method utilizes frequent patterns within the text as linguistic cues to identify specific characteristics of chemical reactions.
arXiv Detail & Related papers (2023-07-04T02:52:30Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
We propose a machine learning-based, unassisted approach to remove chemically wrong entries from data sets.
Our results show an improved prediction quality for models trained on the cleaned and balanced data sets.
arXiv Detail & Related papers (2021-02-02T09:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.