FFHFlow: A Flow-based Variational Approach for Multi-fingered Grasp Synthesis in Real Time
- URL: http://arxiv.org/abs/2407.15161v1
- Date: Sun, 21 Jul 2024 13:33:08 GMT
- Title: FFHFlow: A Flow-based Variational Approach for Multi-fingered Grasp Synthesis in Real Time
- Authors: Qian Feng, Jianxiang Feng, Zhaopeng Chen, Rudolph Triebel, Alois Knoll,
- Abstract summary: We propose exploiting a special kind of Deep Generative Model (DGM) based on Normalizing Flows (NFs)
We first observed an encouraging improvement in diversity by directly applying a single conditional NFs (cNFs) to learn a grasp distribution conditioned on the incomplete point cloud.
This motivated us to develop a novel flow-based d Deep Latent Variable Model (DLVM)
Unlike Variational Autoencoders (VAEs), the proposed DLVM counteracts typical pitfalls by leveraging two cNFs for the prior and likelihood distributions.
- Score: 19.308304984645684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing diverse and accurate grasps with multi-fingered hands is an important yet challenging task in robotics. Previous efforts focusing on generative modeling have fallen short of precisely capturing the multi-modal, high-dimensional grasp distribution. To address this, we propose exploiting a special kind of Deep Generative Model (DGM) based on Normalizing Flows (NFs), an expressive model for learning complex probability distributions. Specifically, we first observed an encouraging improvement in diversity by directly applying a single conditional NFs (cNFs), dubbed FFHFlow-cnf, to learn a grasp distribution conditioned on the incomplete point cloud. However, we also recognized limited performance gains due to restricted expressivity in the latent space. This motivated us to develop a novel flow-based d Deep Latent Variable Model (DLVM), namely FFHFlow-lvm, which facilitates more reasonable latent features, leading to both diverse and accurate grasp synthesis for unseen objects. Unlike Variational Autoencoders (VAEs), the proposed DLVM counteracts typical pitfalls such as mode collapse and mis-specified priors by leveraging two cNFs for the prior and likelihood distributions, which are usually restricted to being isotropic Gaussian. Comprehensive experiments in simulation and real-robot scenarios demonstrate that our method generates more accurate and diverse grasps than the VAE baselines. Additionally, a run-time comparison is conducted to reveal its high potential for real-time applications.
Related papers
- Heavy-Tailed Diffusion Models [38.713884992630675]
We show that traditional diffusion and flow-matching models fail to capture heavy-tailed behavior.
We address this by repurposing the diffusion framework for heavy-tail estimation.
We introduce t-EDM and t-Flow, extensions of existing diffusion and flow models that employ a Student-t prior.
arXiv Detail & Related papers (2024-10-18T04:29:46Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
We introduce a novel framework that enhances diffusion models by supporting a broader range of forward processes.
We also propose a novel parameterization technique for learning the forward process.
Results underscore NFDM's versatility and its potential for a wide range of applications.
arXiv Detail & Related papers (2024-04-19T15:10:54Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Multiple-Source Localization from a Single-Snapshot Observation Using Graph Bayesian Optimization [10.011338977476804]
Multi-source localization from a single snap-shot observation is especially relevant due to its prevalence.
Current methods typically utilizes and greedy selection, and they are usually bonded with one diffusion model.
We propose a simulation-based method termed BOSouL to approximate the results for its sample efficiency.
arXiv Detail & Related papers (2024-03-25T14:46:24Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Neural Diffusion Models [2.1779479916071067]
We present a generalization of conventional diffusion models that enables defining and learning time-dependent non-linear transformations of data.
NDMs outperform conventional diffusion models in terms of likelihood and produce high-quality samples.
arXiv Detail & Related papers (2023-10-12T13:54:55Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data.
In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor.
We propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors.
arXiv Detail & Related papers (2023-04-06T00:20:19Z) - GFlowNet-EM for learning compositional latent variable models [115.96660869630227]
A key tradeoff in modeling the posteriors over latents is between expressivity and tractable optimization.
We propose the use of GFlowNets, algorithms for sampling from an unnormalized density.
By training GFlowNets to sample from the posterior over latents, we take advantage of their strengths as amortized variational algorithms.
arXiv Detail & Related papers (2023-02-13T18:24:21Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics [21.24885597341643]
Conditional Flows (CNFs) are flexible generative models capable of representing complicated distributions with high dimensionality and interdimensional correlations.
We propose MotionFlow as a novel approach that autoregressively normalizes the output on the temporal input features.
We apply our method to different tasks, including prediction, motion prediction time series forecasting, and binary segmentation.
arXiv Detail & Related papers (2021-04-09T14:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.