Back-in-Time Diffusion: Unsupervised Detection of Medical Deepfakes
- URL: http://arxiv.org/abs/2407.15169v2
- Date: Mon, 21 Oct 2024 07:57:56 GMT
- Title: Back-in-Time Diffusion: Unsupervised Detection of Medical Deepfakes
- Authors: Fred Grabovski, Lior Yasur, Guy Amit, Yisroel Mirsky,
- Abstract summary: We propose a novel anomaly detector for medical imagery based on diffusion models.
We show how a similar process can be used to detect synthetic content by making a model reverse the diffusion on a suspected image.
Our method significantly outperforms other state of the art unsupervised detectors with an increased AUC of 0.9 from 0.79 for injection and of 0.96 from 0.91 for removal.
- Score: 3.2720947374803777
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent progress in generative models has made it easier for a wide audience to edit and create image content, raising concerns about the proliferation of deepfakes, especially in healthcare. Despite the availability of numerous techniques for detecting manipulated images captured by conventional cameras, their applicability to medical images is limited. This limitation stems from the distinctive forensic characteristics of medical images, a result of their imaging process. In this work we propose a novel anomaly detector for medical imagery based on diffusion models. Normally, diffusion models are used to generate images. However, we show how a similar process can be used to detect synthetic content by making a model reverse the diffusion on a suspected image. We evaluate our method on the task of detecting fake tumors injected and removed from CT and MRI scans. Our method significantly outperforms other state of the art unsupervised detectors with an increased AUC of 0.9 from 0.79 for injection and of 0.96 from 0.91 for removal on average. We also explore our hypothesis using AI explainability tools and publish our code and new medical deepfake datasets to encourage further research into this domain.
Related papers
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
We propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images.
The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions.
arXiv Detail & Related papers (2024-01-19T08:54:54Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
arXiv Detail & Related papers (2023-10-10T08:44:47Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
We propose a method for detecting unauthorized data usage by planting the injected content into the protected dataset.
Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions.
By analyzing whether the model has memorized the injected content, we can detect models that had illegally utilized the unauthorized data.
arXiv Detail & Related papers (2023-07-06T16:27:39Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
We propose a novel representation called DIffusion Reconstruction Error (DIRE)
DIRE measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model.
It provides a hint that DIRE can serve as a bridge to distinguish generated and real images.
arXiv Detail & Related papers (2023-03-16T13:15:03Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z) - Diffusion Models for Medical Anomaly Detection [0.8999666725996974]
We present a novel weakly supervised anomaly detection method based on denoising diffusion implicit models.
Our method generates very detailed anomaly maps without the need for a complex training procedure.
arXiv Detail & Related papers (2022-03-08T12:35:07Z) - Implicit field learning for unsupervised anomaly detection in medical
images [0.8122270502556374]
An auto-decoder feed-forward neural network learns the distribution of healthy images in the form of a mapping between spatial coordinates and probabilities over a proxy for tissue types.
Anomalies are localized using the voxel-wise probability predicted by our model for the restored image.
We tested our approach in the task of unsupervised localization of gliomas on brain MR images and compared it to several other VAE-based anomaly detection methods.
arXiv Detail & Related papers (2021-06-09T16:57:22Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.