TADA: Temporal Adversarial Data Augmentation for Time Series Data
- URL: http://arxiv.org/abs/2407.15174v1
- Date: Sun, 21 Jul 2024 14:21:00 GMT
- Title: TADA: Temporal Adversarial Data Augmentation for Time Series Data
- Authors: Byeong Tak Lee, Joon-myoung Kwon, Yong-Yeon Jo,
- Abstract summary: Domain generalization involves training machine learning models to perform robustly on unseen samples from out-of-distribution datasets.
Adversarial Data Augmentation (ADA) is a commonly used approach that enhances model adaptability by incorporating synthetic samples.
We propose the Temporal Adversarial Data Augmentation for time teries Data (TADA), which incorporates a time warping technique specifically targeting temporal shifts.
- Score: 1.686373523281992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization involves training machine learning models to perform robustly on unseen samples from out-of-distribution datasets. Adversarial Data Augmentation (ADA) is a commonly used approach that enhances model adaptability by incorporating synthetic samples, designed to simulate potential unseen samples. While ADA effectively addresses amplitude-related distribution shifts, it falls short in managing temporal shifts, which are essential for time series data. To address this limitation, we propose the Temporal Adversarial Data Augmentation for time teries Data (TADA), which incorporates a time warping technique specifically targeting temporal shifts. Recognizing the challenge of non-differentiability in traditional time warping, we make it differentiable by leveraging phase shifts in the frequency domain. Our evaluations across diverse domains demonstrate that TADA significantly outperforms existing ADA variants, enhancing model performance across time series datasets with varied distributions.
Related papers
- Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Understanding the Limits of Deep Tabular Methods with Temporal Shift [28.738848567072004]
We introduce a plug-and-play temporal embedding method based on Fourier series expansion to learn and incorporate temporal patterns.<n>Our experiments demonstrate that this temporal embedding, combined with the improved training protocol, provides a more effective and robust framework for learning from temporal data.
arXiv Detail & Related papers (2025-02-27T16:48:53Z) - TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
A family of models have been developed, utilizing a temporal auto-regressive generative Transformer architecture.
TimeDiT is a general foundation model for time series that employs a denoising diffusion paradigm instead of temporal auto-regressive generation.
Extensive experiments conducted on a varity of tasks such as forecasting, imputation, and anomaly detection, demonstrate the effectiveness of TimeDiT.
arXiv Detail & Related papers (2024-09-03T22:31:57Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift [40.734564394464556]
We present a unified Probabilistic Graphical Model to Jointly capturing intra-/inter-series correlations and modeling the time-variant transitional distribution.
We validate the effectiveness and efficiency of JointPGM through extensive experiments on six highly non-stationary MTS datasets.
arXiv Detail & Related papers (2024-07-18T06:16:03Z) - Causal Discovery-Driven Change Point Detection in Time Series [32.424281626708336]
Change point detection in time series seeks to identify times when the probability distribution of time series changes.
In practical applications, we may be interested only in certain components of the time series, exploring abrupt changes in their distributions.
arXiv Detail & Related papers (2024-07-10T00:54:42Z) - tPARAFAC2: Tracking evolving patterns in (incomplete) temporal data [0.7285444492473742]
We introduce t(emporal)PARAFAC2 which utilizes temporal smoothness regularization on the evolving factors.
Our numerical experiments on both simulated and real datasets demonstrate the effectiveness of the temporal smoothness regularization.
arXiv Detail & Related papers (2024-07-01T15:10:55Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
Time series is one of the most challenging modalities in machine learning research.
OOD detection and generalization on time series tend to suffer due to its non-stationary property.
We propose DIVERSIFY, a framework for OOD detection and generalization on dynamic distributions of time series.
arXiv Detail & Related papers (2023-08-04T12:27:11Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
We propose an effective temporally-conditional diffusion model coined Temporally-Composable diffuser (TCD)
TCD extracts temporal information from interaction sequences and explicitly guides generation with temporal conditions.
Our method reaches or matches the best performance compared with prior SOTA baselines.
arXiv Detail & Related papers (2023-06-08T02:12:26Z) - Towards Diverse and Coherent Augmentation for Time-Series Forecasting [22.213927377926804]
Time-series data augmentations mitigate the issue of insufficient training data for deep learning models.
We propose to combine Spectral and Time Augmentation for generating more diverse and coherent samples.
Experiments on five real-world time-series datasets demonstrate that STAug outperforms the base models without data augmentation.
arXiv Detail & Related papers (2023-03-24T19:40:34Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - On Disentanglement in Gaussian Process Variational Autoencoders [3.403279506246879]
We introduce a class of models recently introduced that have been successful in different tasks on time series data.
Our model exploits the temporal structure of the data by modeling each latent channel with a GP prior and employing a structured variational distribution.
We provide evidence that we can learn meaningful disentangled representations on real-world medical time series data.
arXiv Detail & Related papers (2021-02-10T15:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.