論文の概要: TADA: Temporal Adversarial Data Augmentation for Time Series Data
- arxiv url: http://arxiv.org/abs/2407.15174v2
- Date: Tue, 15 Oct 2024 09:54:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:56:37.714107
- Title: TADA: Temporal Adversarial Data Augmentation for Time Series Data
- Title(参考訳): TADA:時系列データに対する時間的逆データ拡張
- Authors: Byeong Tak Lee, Joon-myoung Kwon, Yong-Yeon Jo,
- Abstract要約: Adversarial Data Augmentation (ADA) はドメインの一般化において広く使われている手法である。
時間のワープは本質的に微分不可能であるが、ADAはバックプロパゲーションによるサンプルの生成に依存している。
本稿では,時系列データに対する時間逆データ拡張(TADA)を提案する。
- 参考スコア(独自算出の注目度): 1.686373523281992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization aim to train models to effectively perform on samples that are unseen and outside of the distribution. Adversarial data augmentation (ADA) is a widely used technique in domain generalization. It enhances the model robustness by including synthetic samples designed to simulate potential unseen scenarios into the training datasets, which is then used to train the model. However, in time series data, traditional ADA approaches often fail to address distribution shifts related to temporal characteristics. To address this limitation, we propose Temporal Adversarial Data Augmentation (TADA) for time series data, which incorporate time warping into ADA. Although time warping is inherently non-differentiable, ADA relies on generating samples through backpropagation. We resolve this issue by leveraging the duality between phase shifts in the frequency domain and time shifts in the time domain, thereby making the process differentiable. Our evaluations across various time series datasets demonstrate that TADA outperforms existing methods for domain generalization. In addition, using distribution visualization, we confirmed that the distribution shifts induced by TADA are clearly different from those induced by ADA, and together, they effectively simulate real-world distribution shifts.
- Abstract(参考訳): ドメインの一般化は、分布の見当たらないサンプルと外部のサンプルを効果的に実行するモデルを訓練することを目的としている。
Adversarial Data Augmentation (ADA) はドメインの一般化において広く使われている手法である。
これは、潜在的に見えないシナリオをトレーニングデータセットにシミュレートするために設計された合成サンプルを含めることで、モデルの堅牢性を高める。
しかし、時系列データでは、従来のADAアプローチは時間的特性に関連する分布シフトに対処できないことが多い。
この制限に対処するため,時系列データに対するTADA(Temporal Adversarial Data Augmentation)を提案する。
時間のワープは本質的に微分不可能であるが、ADAはバックプロパゲーションによるサンプルの生成に依存している。
我々は、周波数領域における位相シフトと時間領域における時間シフトの双対性を利用してこの問題を解決する。
各種時系列データセットを用いて評価した結果,TADは既存の領域一般化手法よりも優れていることがわかった。
さらに,分布可視化を用いて,TADによる分布変化とADAによる分布変化とが明らかに異なることを確認し,実世界の分布変化を効果的にシミュレートした。
関連論文リスト
- TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
時間的自己回帰生成型トランスフォーマーアーキテクチャを利用するモデル群が開発されている。
TimeDiTは時系列の一般的な基礎モデルであり、時間的自己回帰生成の代わりにデノナイジング拡散パラダイムを用いる。
TimeDiTの有効性を実証するために,予測,計算,異常検出などのタスクの多種多様な実験を行った。
論文 参考訳(メタデータ) (2024-09-03T22:31:57Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift [40.734564394464556]
本稿では,時系列内/時系列間の相関関係を統合的に把握し,時変遷移分布をモデル化するための統一確率グラフモデルを提案する。
6つの高定常MTSデータセットに対する広範囲な実験により、JointPGMの有効性と効率を検証した。
論文 参考訳(メタデータ) (2024-07-18T06:16:03Z) - Causal Discovery-Driven Change Point Detection in Time Series [32.424281626708336]
時系列における変化点検出は、時系列の確率分布が変化する時間を特定する。
実践的な応用では、時系列の特定の構成要素にのみ興味を持ち、その分布の急激な変化を探求する。
論文 参考訳(メタデータ) (2024-07-10T00:54:42Z) - tPARAFAC2: Tracking evolving patterns in (incomplete) temporal data [0.7285444492473742]
進化因子の時間的スムーズ性正規化を利用した t(emporal)PARAFAC2 を導入する。
シミュレーションおよび実データを用いた数値実験により,時間的滑らか度正則化の有効性が示された。
論文 参考訳(メタデータ) (2024-07-01T15:10:55Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
時系列は、機械学習研究における最も困難なモダリティの1つである。
時系列上でのOODの検出と一般化は、その非定常性によって悩まされる傾向がある。
時系列の動的分布のOOD検出と一般化のためのフレームワークであるDIVERSIFYを提案する。
論文 参考訳(メタデータ) (2023-08-04T12:27:11Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
テンポラリ・コンポラブル・ディフューザ(TCD)を用いた実効時間条件拡散モデルを提案する。
TCDは、相互作用シーケンスから時間情報を抽出し、時間条件で生成を明示的にガイドする。
提案手法は,従来のSOTAベースラインと比較して最高の性能を達成または一致させる。
論文 参考訳(メタデータ) (2023-06-08T02:12:26Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - On Disentanglement in Gaussian Process Variational Autoencoders [3.403279506246879]
時系列データ上で異なるタスクに成功しているモデルを最近導入した。
本モデルでは,各潜伏チャネルをGP前にモデル化し,構造的変動分布を用いることで,データの時間的構造を利用する。
実世界の医療時系列データから有意義な不整合表現を学習できる証拠を提供する。
論文 参考訳(メタデータ) (2021-02-10T15:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。