Fever Detection with Infrared Thermography: Enhancing Accuracy through Machine Learning Techniques
- URL: http://arxiv.org/abs/2407.15302v2
- Date: Sat, 10 Aug 2024 08:18:33 GMT
- Title: Fever Detection with Infrared Thermography: Enhancing Accuracy through Machine Learning Techniques
- Authors: Parsa Razmara, Tina Khezresmaeilzadeh, B. Keith Jenkins,
- Abstract summary: Infrared Thermography (IRT) has proven to be a crucial non-contact method for measuring body temperature.
Traditional non-contact infrared thermometers (NCITs) often exhibit significant variability in readings.
To address this, we integrated machine learning algorithms with IRT to enhance the accuracy and reliability of temperature measurements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic has underscored the necessity for advanced diagnostic tools in global health systems. Infrared Thermography (IRT) has proven to be a crucial non-contact method for measuring body temperature, vital for identifying febrile conditions associated with infectious diseases like COVID-19. Traditional non-contact infrared thermometers (NCITs) often exhibit significant variability in readings. To address this, we integrated machine learning algorithms with IRT to enhance the accuracy and reliability of temperature measurements. Our study systematically evaluated various regression models using heuristic feature engineering techniques, focusing on features' physiological relevance and statistical significance. The Convolutional Neural Network (CNN) model, utilizing these techniques, achieved the lowest RMSE of 0.2223, demonstrating superior performance compared to results reported in previous literature. Among non-neural network models, the Binning method achieved the best performance with an RMSE of 0.2296. Our findings highlight the potential of combining advanced feature engineering with machine learning to improve diagnostic tools' effectiveness, with implications extending to other non-contact or remote sensing biomedical applications. This paper offers a comprehensive analysis of these methodologies, providing a foundation for future research in the field of non-invasive medical diagnostics.
Related papers
- The use of Multi-domain Electroencephalogram Representations in the building of Models based on Convolutional and Recurrent Neural Networks for Epilepsy Detection [1.4785447770765987]
Epilepsy affects approximately 50 million people globally and remains challenging to treat.
EEG data is prone to variability between experts, emphasizing the need for automated solutions.
This work systematically compares deep neural networks trained on EEG data in time, frequency, and time-frequency domains.
Results demonstrate that frequency-domain data achieves detection metrics exceeding 97%, providing a robust foundation for more accurate and reliable seizure detection systems.
arXiv Detail & Related papers (2025-04-24T19:50:48Z) - Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography [0.0]
This study presents a comprehensive evaluation of radiomics-based and deep learning-based approaches for disease detection in chest radiography.
It focuses on COVID-19, lung opacity, and viral pneumonia.
The results aim to inform the integration of AI-driven diagnostic tools in clinical practice.
arXiv Detail & Related papers (2025-04-16T16:54:37Z) - Cross-Modality Investigation on WESAD Stress Classification [0.0]
This study develops transformer models for stress detection using the WESAD dataset, training on electrocardiograms (ECG), electrodermal activity (EDA), electromyography (EMG), respiration rate (RESP), temperature (TEMP), and 3-axis accelerometer (ACC) signals.
The results demonstrate the effectiveness of single-modality transformers in analyzing physiological signals, achieving state-of-the-art performance with accuracy, precision and recall values in the range of $99.73%$ to $99.95%$ for stress detection.
arXiv Detail & Related papers (2025-02-26T01:04:58Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.
Our findings illustrate significant advancements in the precision of segmentation and classification.
This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
arXiv Detail & Related papers (2025-02-23T23:28:47Z) - Object Detection for Medical Image Analysis: Insights from the RT-DETR Model [40.593685087097995]
This paper focuses on the application of a novel detection framework based on the RT-DETR model for analyzing intricate image data.
The proposed RT-DETR model, built on a Transformer-based architecture, excels at processing high-dimensional and complex visual data with enhanced robustness and accuracy.
arXiv Detail & Related papers (2025-01-27T20:02:53Z) - Synthetic CT image generation from CBCT: A Systematic Review [44.01505745127782]
Generation of synthetic CT (sCT) images from cone-beam CT (CBCT) data using deep learning methodologies represents a significant advancement in radiation oncology.
A total of 35 relevant studies were identified and analyzed, revealing the prevalence of deep learning approaches in the generation of sCT.
arXiv Detail & Related papers (2025-01-22T13:54:07Z) - EVolutionary Independent DEtermiNistiC Explanation [5.127310126394387]
This paper introduces the Evolutionary Independent Deterministic Explanation (EVIDENCE) theory.
EVIDENCE offers a deterministic, model-independent method for extracting significant signals from black-box models.
Practical applications of EVIDENCE include improving diagnostic accuracy in healthcare and enhancing audio signal analysis.
arXiv Detail & Related papers (2025-01-20T12:05:14Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
This study aims to use heart rate variability (HRV) features to develop an effective predictive model for sepsis detection.
A neural network model is trained on the HRV features, achieving an F1 score of 0.805, a precision of 0.851, and a recall of 0.763.
arXiv Detail & Related papers (2024-08-01T01:47:29Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - AMDNet23: A combined deep Contour-based Convolutional Neural Network and
Long Short Term Memory system to diagnose Age-related Macular Degeneration [0.0]
This study operates on a AMDNet23 system of deep learning that combined the neural networks made up of convolutions (CNN) and short-term and long-term memory (LSTM) to automatically detect aged macular degeneration (AMD) disease from fundus ophthalmology.
The proposed hybrid deep AMDNet23 model demonstrates to detection of AMD ocular disease and the experimental result achieved an accuracy 96.50%, specificity 99.32%, sensitivity 96.5%, and F1-score 96.49.0%.
arXiv Detail & Related papers (2023-08-30T07:48:32Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Improving COVID-19 CT Classification of CNNs by Learning
Parameter-Efficient Representation [31.51725965329019]
Deep learning methods have been proposed to assist clinicians in automatic COVID-19 diagnosis based on computed tomography imaging.
DenseNet121 achieves an average test accuracy of 99.44% in three trials for three-category classification, including normal, non-COVID-19 pneumonia, and COVID-19 pneumonia.
arXiv Detail & Related papers (2022-08-09T12:24:53Z) - EVA: Generating Longitudinal Electronic Health Records Using Conditional
Variational Autoencoders [34.22731849545798]
We propose EHR Variational Autoencoder (EVA) for synthesizing sequences of discrete EHR encounters and encounter features.
We illustrate that EVA can produce realistic sequences, account for individual differences among patients, and can be conditioned on specific disease conditions.
We assess the utility of the methods on large real-world EHR repositories containing over 250, 000 patients.
arXiv Detail & Related papers (2020-12-18T02:37:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.