論文の概要: Deep Learning for Economists
- arxiv url: http://arxiv.org/abs/2407.15339v3
- Date: Wed, 13 Nov 2024 15:25:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:11.116857
- Title: Deep Learning for Economists
- Title(参考訳): エコノミストのためのディープラーニング
- Authors: Melissa Dell,
- Abstract要約: ディープラーニングは、大規模で非構造化のテキストや画像データセットから構造化情報をインプットする強力な方法を提供する。
このレビューでは、分類器、回帰モデル、生成AI、埋め込みモデルなど、ディープニューラルネットワークについて紹介する。
適切な方法を使用する場合、ディープラーニングモデルはチューニングが安く、数百万から数十億のデータポイントに関わる問題に十分対応できる。
- 参考スコア(独自算出の注目度): 2.44755919161855
- License:
- Abstract: Deep learning provides powerful methods to impute structured information from large-scale, unstructured text and image datasets. For example, economists might wish to detect the presence of economic activity in satellite images, or to measure the topics or entities mentioned in social media, the congressional record, or firm filings. This review introduces deep neural networks, covering methods such as classifiers, regression models, generative AI, and embedding models. Applications include classification, document digitization, record linkage, and methods for data exploration in massive scale text and image corpora. When suitable methods are used, deep learning models can be cheap to tune and can scale affordably to problems involving millions or billions of data points.. The review is accompanied by a companion website, EconDL, with user-friendly demo notebooks, software resources, and a knowledge base that provides technical details and additional applications.
- Abstract(参考訳): ディープラーニングは、大規模で非構造化のテキストや画像データセットから構造化情報をインプットする強力な方法を提供する。
例えば、経済学者は、衛星画像における経済活動の存在を検知したり、ソーシャルメディア、議会記録、ファーム・ファイリングで言及されているトピックや実体を計測したいかもしれない。
このレビューでは、分類器、回帰モデル、生成AI、埋め込みモデルなど、ディープニューラルネットワークについて紹介する。
アプリケーションには、分類、文書のデジタル化、レコードリンク、大規模テキストと画像コーパスのデータ探索方法が含まれる。
適切な方法を使用する場合、ディープラーニングモデルはチューニングが安く、数百万から数十億のデータポイントに関わる問題に十分対応できる。
と。
レビューには、ユーザフレンドリーなデモノート、ソフトウェアリソース、技術的な詳細と追加のアプリケーションを提供するナレッジベースを備えたWebサイトであるEconDLが付属している。
関連論文リスト
- Exploiting Contextual Uncertainty of Visual Data for Efficient Training of Deep Models [0.65268245109828]
アクティブラーニングCDALにおける文脈多様性の概念を導入する。
モデルバイアスを低減するために、文脈的に公正なデータをキュレートするデータ修復アルゴリズムを提案する。
我々は、野生生物カメラトラップ画像の画像検索システムと、質の悪い農村道路に対する信頼性の高い警告システムの開発に取り組んでいる。
論文 参考訳(メタデータ) (2024-11-04T09:43:33Z) - RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Webスケールコーパスでトレーニングされた大規模な言語モデルは、望ましくないデータポイントを記憶することができる。
訓練されたモデルからこれらのデータポイントを「消去」することを目的とした、多くの機械学習手法が提案されている。
以下に示す次元に基づいて,機械学習のためのRESTORフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T20:54:35Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Synthetic continued pretraining [29.6872772403251]
ドメイン固有文書の小さなコーパス上での合成継続事前学習を提案する。
合成データ拡張アルゴリズムであるEntiGraphでこの提案をインスタンス化する。
合成データ拡張が、よりデータ効率のよい学習を可能にするために、どのように知識を"再編成"できるかを示す。
論文 参考訳(メタデータ) (2024-09-11T17:21:59Z) - Masked Image Modeling: A Survey [73.21154550957898]
マスク付き画像モデリングは、コンピュータビジョンにおける強力な自己教師付き学習技術として登場した。
我々は近年,分類学を構築し,最も顕著な論文をレビューしている。
我々は,最も人気のあるデータセット上で,様々なマスク付き画像モデリング手法の性能評価結果を集約する。
論文 参考訳(メタデータ) (2024-08-13T07:27:02Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
本論文は,知識グラフの自動構築と完成の技術をテキストから改善することを目的としている。
この文脈では、新しいパラダイムの1つは、言語モデルがプロンプトとともにそのまま使われる、コンテキスト内学習である。
論文 参考訳(メタデータ) (2023-05-15T17:10:19Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Efficient Document Image Classification Using Region-Based Graph Neural
Network [4.147346416230273]
文書画像分類は、様々な産業にまたがる多くの企業アプリケーションで商業化が可能であるため、依然としてポピュラーな研究分野である。
大規模な事前学習されたコンピュータビジョンと言語モデル、グラフニューラルネットワークの最近の進歩は、ドキュメントイメージの分類に多くのツールを提供している。
本稿では,グラフ畳み込みニューラルネットワークを用いた効率的な文書画像分類フレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-25T17:57:04Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z) - Knowledge Guided Metric Learning for Few-Shot Text Classification [22.832467388279873]
我々は,人間の知識を模倣する素早い学習に外部知識を導入することを提案する。
人間の知性に触発され,人間の知識を模倣する素早い学習に外部知識を導入することを提案する。
提案手法は,最新の数ショットのテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-04T10:56:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。