論文の概要: Dissecting Multiplication in Transformers: Insights into LLMs
- arxiv url: http://arxiv.org/abs/2407.15360v1
- Date: Mon, 22 Jul 2024 04:07:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 16:10:42.906988
- Title: Dissecting Multiplication in Transformers: Insights into LLMs
- Title(参考訳): 変圧器における乗算の分別:LLMへの展望
- Authors: Luyu Qiu, Jianing Li, Chi Su, Chen Jason Zhang, Lei Chen,
- Abstract要約: 本稿では,この領域における変圧器の不完全性を探索し,説明するために,典型的な算術的タスクである整数乗法に焦点を当てる。
n桁整数乗算を行うために訓練されたバニラ変圧器の包括的解析を行う。
乗算タスクにおける変換器の性能向上のための改良を提案する。
- 参考スコア(独自算出の注目度): 23.109124772063574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based large language models have achieved remarkable performance across various natural language processing tasks. However, they often struggle with seemingly easy tasks like arithmetic despite their vast capabilities. This stark disparity raise human's concerns about their safe and ethical use, hinder their widespread adoption.In this paper, we focus on a typical arithmetic task, integer multiplication, to explore and explain the imperfection of transformers in this domain. We provide comprehensive analysis of a vanilla transformer trained to perform n-digit integer multiplication. Our observations indicate that the model decomposes multiplication task into multiple parallel subtasks, sequentially optimizing each subtask for each digit to complete the final multiplication. Based on observation and analysis, we infer the reasons of transformers deficiencies in multiplication tasks lies in their difficulty in calculating successive carryovers and caching intermediate results, and confirmed this inference through experiments. Guided by these findings, we propose improvements to enhance transformers performance on multiplication tasks. These enhancements are validated through rigorous testing and mathematical modeling, not only enhance transformer's interpretability, but also improve its performance, e.g., we achieve over 99.9% accuracy on 5-digit integer multiplication with a tiny transformer, outperform LLMs GPT-4. Our method contributes to the broader fields of model understanding and interpretability, paving the way for analyzing more complex tasks and Transformer models. This work underscores the importance of explainable AI, helping to build trust in large language models and promoting their adoption in critical applications.
- Abstract(参考訳): トランスフォーマーベースの大規模言語モデルは、様々な自然言語処理タスクで顕著なパフォーマンスを実現している。
しかし、その膨大な能力にもかかわらず、算術のような一見簡単なタスクに苦しむことが多い。
本稿では、この領域における変圧器の不完全性を探究し、説明するために、典型的な算術課題である整数乗算に焦点を当てる。
n桁整数乗算を行うために訓練されたバニラ変圧器の包括的解析を行う。
本研究は,複数の並列サブタスクに乗算タスクを分解し,各桁に対する各サブタスクを逐次最適化し,最終的な乗算を完了することを示す。
観測と解析から,乗算タスクにおけるトランスフォーマーの欠如の原因は,連続したトランジットの計算や中間結果のキャッシングが困難なことにあると推察し,実験により確認した。
これらの結果から,乗算タスクにおけるトランスフォーマー性能の向上を提案する。
これらの拡張は、厳密なテストと数学的モデリングによって検証され、変換器の解釈可能性の向上だけでなく、例えば、5桁整数乗算の99.9%以上の精度向上を実現している。
本手法は,より複雑なタスクやトランスフォーマーモデルを解析する手段として,モデル理解と解釈可能性の幅広い分野に寄与する。
この研究は、説明可能なAIの重要性を強調し、大きな言語モデルへの信頼の構築を支援し、重要なアプリケーションにおけるAIの採用を促進する。
関連論文リスト
- Learning Spectral Methods by Transformers [18.869174453242383]
多層トランスフォーマーは、十分な数の事前学習インスタンスを与えられた場合、アルゴリズム自体を学習可能であることを示す。
この学習パラダイムは、コンテキスト内学習設定とは異なるものであり、人間の脳の学習手順と似ている。
論文 参考訳(メタデータ) (2025-01-02T15:53:25Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
インコンテキスト学習により、GPTスタイルのトランスフォーマーは、重みを変更することなく推論中に一般化できる。
本稿では,ICLタスクとしてアフィンの再発を学習し,予測する能力に着目する。
実験的手法と理論的手法の両方を用いてモデルの内部動作を分析する。
論文 参考訳(メタデータ) (2024-10-22T21:30:01Z) - How Numerical Precision Affects Mathematical Reasoning Capabilities of LLMs [69.55103380185612]
本稿では,変圧器を用いた大規模言語モデルの数学的タスクにおける有効性に影響を与える重要な要因として,数値的精度を同定する。
その結果,数値精度の低いトランスフォーマーでは,繰り返し加算や整数乗算などの算術的なタスクに対処できないことがわかった。
対照的に、標準的な数値精度のトランスフォーマーは、モデルサイズを大幅に小さくすることで、これらのタスクを効率的に処理することができる。
論文 参考訳(メタデータ) (2024-10-17T17:59:35Z) - Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
本研究では, ソフトマックスを用いた自己保持層と, 勾配勾配下での完全連結層からなるトランスフォーマーの最適化について検討した。
この結果から,データモデルにおける信号対雑音比に基づいて,小さなテストエラー位相と大規模なテストエラー状態とを区別できるシャープ条件を確立した。
論文 参考訳(メタデータ) (2024-09-28T13:24:11Z) - Does learning the right latent variables necessarily improve in-context learning? [13.828665019247444]
Transformersのような大規模な自己回帰モデルは、新しい重みを学習することなく、コンテキスト内学習(ICL)によってタスクを解決できる。
本稿では,タスクラテントを明示的に推論する効果について検討する。
タスク関連潜伏変数への偏りは、分配性能を向上させるには至らない。
論文 参考訳(メタデータ) (2024-05-29T15:06:10Z) - Understanding Addition in Transformers [2.07180164747172]
本稿では,n桁整数加算を行うために訓練された1層トランスフォーマーモデルの包括的解析を行う。
提案手法は,各桁を対象とする並列ストリームに分割し,各桁の異なる位置に合わせて最適化されたアルゴリズムを用いることを示唆している。
論文 参考訳(メタデータ) (2023-10-19T19:34:42Z) - Eureka-Moments in Transformers: Multi-Step Tasks Reveal Softmax Induced Optimization Problems [27.681141346132286]
多段階決定タスクに直面する場合の変圧器の訓練損失の迅速化について検討した。
合成タスクを用いて問題を詳細に研究するが、言語モデリングや文脈内学習にも性能の飛躍が観察できる。
我々は,言語モデリングとICLの訓練を改善するために,合成多段階タスクを改善するためのコネクションを見つけ,その方法を示す。
論文 参考訳(メタデータ) (2023-10-19T17:55:06Z) - Faith and Fate: Limits of Transformers on Compositionality [109.79516190693415]
3つの代表的構成課題にまたがる変圧器大言語モデルの限界について検討する。
これらのタスクは、問題をサブステップに分割し、これらのステップを正確な答えに合成する必要があります。
実験結果から,多段階合成推論を線形化部分グラフマッチングに還元することにより,トランスフォーマーLLMが構成課題を解くことが示唆された。
論文 参考訳(メタデータ) (2023-05-29T23:24:14Z) - Optimizing Non-Autoregressive Transformers with Contrastive Learning [74.46714706658517]
非自己回帰変換器(NAT)は、逐次順序ではなく全ての単語を同時に予測することにより、自動回帰変換器(AT)の推論遅延を低減する。
本稿では,データ分布ではなく,モデル分布からのサンプリングによるモダリティ学習の容易化を提案する。
論文 参考訳(メタデータ) (2023-05-23T04:20:13Z) - Pretrained Transformers as Universal Computation Engines [105.00539596788127]
自然言語で事前学習したトランスフォーマーを,最小限の微調整で他のモダリティに一般化する能力について検討する。
本研究では, 数値計算, 視覚, タンパク質折り畳み予測にまたがる様々なシーケンス分類タスクについて, 微調整を行った。
このようなプリトレーニングにより、FPTはこれらのモダリティにゼロショットで一般化することができ、これらのタスクで完全に訓練されたトランスのパフォーマンスと一致します。
論文 参考訳(メタデータ) (2021-03-09T06:39:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。