論文の概要: Qubit-efficient quantum combinatorial optimization solver
- arxiv url: http://arxiv.org/abs/2407.15539v1
- Date: Mon, 22 Jul 2024 11:02:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 15:21:11.522946
- Title: Qubit-efficient quantum combinatorial optimization solver
- Title(参考訳): 量子ビット効率の量子組合せ最適化器
- Authors: Bhuvanesh Sundar, Maxime Dupont,
- Abstract要約: そこで我々は,候補ビット解をより少ない量子ビットの絡み合った波動関数にマッピングすることで,制限を克服する量子ビット効率のアルゴリズムを開発した。
このアプローチは、短期的な中間スケールと将来のフォールトトレラントな小規模量子デバイスに有効である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum optimization solvers typically rely on one-variable-to-one-qubit mapping. However, the low qubit count on current quantum computers is a major obstacle in competing against classical methods. Here, we develop a qubit-efficient algorithm that overcomes this limitation by mapping a candidate bit string solution to an entangled wave function of fewer qubits. We propose a variational quantum circuit generalizing the quantum approximate optimization ansatz (QAOA). Extremizing the ansatz for Sherrington-Kirkpatrick spin glass problems, we show valuable properties such as the concentration of ansatz parameters and derive performance guarantees. This approach could benefit near-term intermediate-scale and future fault-tolerant small-scale quantum devices.
- Abstract(参考訳): 量子最適化の解法は通常、1-変数から1-ビットのマッピングに依存する。
しかし、現在の量子コンピュータにおける量子ビット数が少ないことは、古典的手法と競合する大きな障害である。
そこで本研究では、候補ビット列解をより少ない量子ビットの絡み合った波動関数にマッピングすることで、この制限を克服する量子ビット効率のアルゴリズムを開発する。
本稿では,量子近似最適化アンサッツ(QAOA)を一般化した変分量子回路を提案する。
シェリントン・カークパトリック・スピングラス問題に対するアンザッツの最大化は、アンザッツパラメータの濃度や性能保証の導出など、重要な性質を示す。
このアプローチは、短期的な中間スケールと将来のフォールトトレラントな小規模量子デバイスに有効である。
関連論文リスト
- Symmetry-preserved cost functions for variational quantum eigensolver [0.0]
ハイブリッド量子-古典的変分アルゴリズムは、ノイズの多い量子コンピュータに最適であると考えられている。
コスト関数に直接対称性の保存を符号化し、ハードウェア効率の良いAns"atzeをより効率的に利用できるようにする。
論文 参考訳(メタデータ) (2024-11-25T20:33:47Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
波長割当問題を解くための量子インスピレーションアルゴリズムを提案し,開発する。
本研究は,電気通信における現実的な問題に対する量子インスパイアされたアルゴリズムの活用の道筋をたどるものである。
論文 参考訳(メタデータ) (2022-11-01T07:52:47Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
本稿では,量子ハードウェアの制約を保存する量子最適化アルゴリズムの,これまでで最大の実行方法を示す。
我々は、最大20キュービットと2キュービットゲート深さ最大159の量子進化を制限するXY-QAOA回路を実行する。
本稿では,アルゴリズムのトレードオフと,短期量子ハードウェア上での実行に対する影響について論じる。
論文 参考訳(メタデータ) (2022-06-13T16:21:04Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
本稿では,近距離デバイスに実装可能なアディベート量子コンピューティングの離散バージョンを提案する。
提案アルゴリズムと変分量子固有解器を2つの古典最適化問題で比較する。
論文 参考訳(メタデータ) (2022-06-09T09:31:57Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
論文 参考訳(メタデータ) (2022-03-04T17:48:57Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
我々はQQRA(Quantum Qubit Rotation Algorithm)という単純なアルゴリズムを導入する。
最大カット問題の近似解は 1 に近い確率で得られる。
我々は、よく知られた量子近似最適化アルゴリズムと古典的なゲーマン・ウィリアムソンアルゴリズムと比較する。
論文 参考訳(メタデータ) (2021-10-15T11:19:48Z) - Quantum Error Mitigation Relying on Permutation Filtering [84.66087478797475]
本稿では,既存の置換に基づく手法を特殊なケースとして含む,置換フィルタ(permutation filters)と呼ばれる一般的なフレームワークを提案する。
提案するフィルタ設計アルゴリズムは, 常に大域的最適度に収束し, フィルタが既存の置換法よりも大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-07-03T16:07:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。