論文の概要: Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization
- arxiv url: http://arxiv.org/abs/2203.02464v1
- Date: Fri, 4 Mar 2022 17:48:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 03:40:06.827271
- Title: Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization
- Title(参考訳): ベイズ学習初期化を伴う変分量子回路におけるバレン高原の生存
- Authors: Ali Rad, Alireza Seif, Norbert M. Linke
- Abstract要約: 変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum-classical hybrid algorithms are seen as a promising
strategy for solving practical problems on quantum computers in the near term.
While this approach reduces the number of qubits and operations required from
the quantum machine, it places a heavy load on a classical optimizer. While
often under-appreciated, the latter is a computationally hard task due to the
barren plateau phenomenon in parameterized quantum circuits. The absence of
guiding features like gradients renders conventional optimization strategies
ineffective as the number of qubits increases. Here, we introduce the
fast-and-slow algorithm, which uses Bayesian Learning to identify a promising
region in parameter space. This is used to initialize a fast local optimizer to
find the global optimum point efficiently. We illustrate the effectiveness of
this method on the Bars-and-Stripes (BAS) quantum generative model, which has
been studied on several quantum hardware platforms. Our results move
variational quantum algorithms closer to their envisioned applications in
quantum chemistry, combinatorial optimization, and quantum simulation problems.
- Abstract(参考訳): 変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
このアプローチは量子マシンに必要な量子ビット数と演算を減少させるが、古典的な最適化器に負荷をかける。
しばしば過小評価されるが、後者はパラメータ化量子回路におけるバレンプラトー現象のために計算的に難しい課題である。
グラデーションのような案内機能がないことは、キュービット数の増加に伴って従来の最適化戦略を無効にする。
本稿では,ベイズ学習を用いてパラメータ空間内の有望領域を同定するfast-and-slowアルゴリズムを提案する。
これは、高速な局所最適化器を初期化し、グローバル最適点を効率的に見つけるために使われる。
いくつかの量子ハードウェアプラットフォームで研究されているBars-and-Stripes(BAS)量子生成モデルにおける本手法の有効性について述べる。
本研究は, 量子化学, 組合せ最適化, 量子シミュレーション問題において, 変分量子アルゴリズムを応用対象に近づけるものである。
関連論文リスト
- Qubit-efficient quantum combinatorial optimization solver [0.0]
そこで我々は,候補ビット解をより少ない量子ビットの絡み合った波動関数にマッピングすることで,制限を克服する量子ビット効率のアルゴリズムを開発した。
このアプローチは、短期的な中間スケールと将来のフォールトトレラントな小規模量子デバイスに有効である。
論文 参考訳(メタデータ) (2024-07-22T11:02:13Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum-Enhanced Greedy Combinatorial Optimization Solver [12.454028945013924]
最適化問題を解くために反復量子最適化アルゴリズムを導入する。
72量子ビット以下のプログラム可能な超伝導量子系に量子アルゴリズムを実装した。
量子アルゴリズムは古典的な欲求よりも体系的に優れており、量子エンハンスメントのシグナルとなる。
論文 参考訳(メタデータ) (2023-03-09T18:59:37Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
最小限のフォールトトレラント量子コンピュータで試すのに、最適化のための量子アルゴリズムが最も実用的であるかを探る。
この結果から,2次高速化のみを実現する量子最適化が,古典的アルゴリズムよりも有利であるという考えが否定される。
論文 参考訳(メタデータ) (2020-07-14T22:54:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。