論文の概要: Sustainable broadcasting in Blockchain Network with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2407.15616v1
- Date: Mon, 22 Jul 2024 13:24:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 15:01:15.042099
- Title: Sustainable broadcasting in Blockchain Network with Reinforcement Learning
- Title(参考訳): 強化学習によるブロックチェーンネットワークにおける持続的ブロードキャスト
- Authors: Danila Valko, Daniel Kudenko,
- Abstract要約: 推定では、Bitcoinの二酸化炭素排出量は年間平均6600万トンから2600万トンと見積もられている。
ブロックチェーンネットワークにおけるブロックブロードキャスト方式を改善する強化学習に基づく効率的な手法を提案する。
- 参考スコア(独自算出の注目度): 0.5524804393257919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent estimates put the carbon footprint of Bitcoin and Ethereum at an average of 64 and 26 million tonnes of CO2 per year, respectively. To address this growing problem, several possible approaches have been proposed in the literature: creating alternative blockchain consensus mechanisms, applying redundancy reduction techniques, utilizing renewable energy sources, and employing energy-efficient devices, etc. In this paper, we follow the second avenue and propose an efficient approach based on reinforcement learning that improves the block broadcasting scheme in blockchain networks. The analysis and experimental results confirmed that the proposed improvement of the block propagation scheme could cleverly handle network dynamics and achieve better results than the default approach. Additionally, our technical integration of the simulator and developed RL environment can be used as a complete solution for further study of new schemes and protocols that use RL or other ML techniques.
- Abstract(参考訳): 最近の推計では、BitcoinとEthereumのカーボンフットプリントは、それぞれ年間平均64万トンと2600万トンである。
新たなブロックチェーンコンセンサス機構の作成、冗長性低減技術の適用、再生可能エネルギー源の利用、エネルギー効率の高いデバイスの利用などである。
本稿では,ブロックチェーンネットワークにおけるブロックブロードキャスト方式を改善する強化学習に基づく効率的な手法を提案する。
解析および実験結果から,ブロック伝搬方式の改良がネットワーク力学を巧みに処理し,既定の手法よりも優れた結果が得られることを確認した。
さらに、シミュレータとRL環境の技術的統合は、RLや他のML技術を用いた新しいスキームやプロトコルのさらなる研究のための完全なソリューションとして利用することができる。
関連論文リスト
- A Comprehensive Survey on Green Blockchain: Developing the Next Generation of Energy Efficient and Sustainable Blockchain Systems [0.0]
この記事では、ブロックチェーンの主要なコンポーネントを分析し、そのエネルギー消費を減らすための戦略を探る。
このような目的のために、コンセンサスメカニズムを比較し、ネットワーク通信エネルギー消費を減らすためのレコメンデーションを提供する。
ブロックチェーンシステムにおける消費電力削減の主な課題と限界について分析する。
論文 参考訳(メタデータ) (2024-10-27T20:22:25Z) - Efficient Zero-Knowledge Proofs for Set Membership in Blockchain-Based Sensor Networks: A Novel OR-Aggregation Approach [20.821562115822182]
本稿では,ゼロ知識集合メンバシップ証明のための新しいOR集約手法を提案する。
我々は、包括的な理論基盤、詳細なプロトコル仕様、厳密なセキュリティ分析を提供する。
その結果, 証明サイズ, 生成時間, 検証効率が有意に向上した。
論文 参考訳(メタデータ) (2024-10-11T18:16:34Z) - Securing Proof of Stake Blockchains: Leveraging Multi-Agent Reinforcement Learning for Detecting and Mitigating Malicious Nodes [0.2982610402087727]
MRL-PoS+は、PoSブロックチェーンのセキュリティを強化するための新しいコンセンサスアルゴリズムである。
MRL-PoS+は,PoSブロックチェーンの攻撃レジリエンスを著しく向上することを示す。
論文 参考訳(メタデータ) (2024-07-30T17:18:03Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Secure and Efficient Federated Learning Through Layering and Sharding
Blockchain [15.197940168865271]
本稿では,新しい2層ブロックチェーン駆動型フェデレート学習システムChainFLを提案する。
インターネットネットワークをサブチェーン層内の複数のシャードに分割し、情報交換の規模を効果的に削減する。
また、DAG(Direct Acyclic Graph)ベースのメインチェーンをメインチェーン層として採用し、並列および非同期のクロスシャード検証を可能にする。
論文 参考訳(メタデータ) (2021-04-27T12:19:07Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Constrained Deep Reinforcement Learning for Energy Sustainable Multi-UAV
based Random Access IoT Networks with NOMA [20.160827428161898]
太陽エネルギーの無人航空機(UAV)がIoTデバイスからリモートサーバにデータを中継する無線IoTネットワークの大規模チャネルアクセスを改善するために,非直交多重アクセス技術を適用した。
IoTデバイスは、アダプティブ$p$パーセンスタントスロット付きAlohaプロトコルを使用して共有無線チャネルにアクセスし、ソーラーパワーのUAVは、SICを採用して、IoTデバイスから受信した複数のデータをデコードしてアクセス効率を向上させる。
論文 参考訳(メタデータ) (2020-01-31T22:05:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。