Probing quantum effects with classical stochastic analogs
- URL: http://arxiv.org/abs/2012.07120v2
- Date: Wed, 25 Aug 2021 09:07:24 GMT
- Title: Probing quantum effects with classical stochastic analogs
- Authors: R\'emi Goerlich, Giovanni Manfredi, Paul-Antoine Hervieux, Laurent
Mertz, Cyriaque Genet
- Abstract summary: We propose a method to construct a classical analog of an open quantum system.
The classical analog is made out of a collection of identical wells where classical particles of mass $m$ are trapped.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method to construct a classical analog of an open quantum
system, namely a single quantum particle confined in a potential well and
immersed in a thermal bath. The classical analog is made out of a collection of
identical wells where classical particles of mass $m$ are trapped. The
distribution $n(x,t)$ of the classical positions is used to reconstruct the
quantum Bohm potential $V_{\rm Bohm} = -\frac{\hbar^2}{2 m} \frac{\Delta
\sqrt{n}}{\sqrt{n}}$, which in turn acts on the shape of the potential wells.
As a result, the classical particles experience an effective "quantum" force.
This protocol is tested with numerical simulations using single- and
double-well potentials, evidencing typical quantum effects such as long-lasting
correlations and quantum tunneling. For harmonic confinement, the analogy is
implemented experimentally using micron-sized dielectric beads optically
trapped by a laser beam.
Related papers
- The Hidden Ontological Variable in Quantum Harmonic Oscillators [0.0]
The standard quantum mechanical harmonic oscillator has an exact, dual relationship with a completely classical system.
One finds that, where the classical system always obeys the rule "probability in = probability out", the same probabilities are quantum probabilities in the quantum system.
arXiv Detail & Related papers (2024-07-25T16:05:18Z) - A quantum oscillator interacting with a classical oscillator [3.7355759505527133]
We study a quantum oscillator interacting and back-reacting on a classical oscillator.
We solve the system using the classical-quantum path integral formulation.
This serves as a toy model for a number of other systems in which one system can be treated as effectively classical.
arXiv Detail & Related papers (2024-03-12T10:13:02Z) - Quantumness and quantum to classical transition in the generalized Rabi
model [17.03191662568079]
We define the quantumness of a Hamiltonian by the free energy difference between its quantum and classical descriptions.
We show that the Jaynes-Cummings and anti Jaynes-Cummings models exhibit greater quantumness than the Rabi model.
arXiv Detail & Related papers (2023-11-12T18:24:36Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Embedding classical dynamics in a quantum computer [0.0]
We develop a framework for simulating measure-preserving, ergodic dynamical systems on a quantum computer.
Our approach provides a new operator-theoretic representation of classical dynamics.
We present simulated quantum circuit experiments in Qiskit Aer, as well as actual experiments on the IBM Quantum System One.
arXiv Detail & Related papers (2020-12-11T03:25:48Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.