Process tensor distinguishability measures
- URL: http://arxiv.org/abs/2407.15712v2
- Date: Fri, 08 Nov 2024 17:13:00 GMT
- Title: Process tensor distinguishability measures
- Authors: Guilherme Zambon,
- Abstract summary: We analyze two classes of distinguishability measures commonly used in general applications of quantum combs.
We show that the first class, called Choi divergences, does not satisfy an important data processing inequality, while the second one, which we call generalized divergences, does.
- Score: 0.0
- License:
- Abstract: Process tensors are quantum combs describing the evolution of open quantum systems through multiple steps of a quantum dynamics. While there is more than one way to measure how different two processes are, special care must be taken to ensure quantifiers obey physically desirable conditions such as data processing inequalities. Here, we analyze two classes of distinguishability measures commonly used in general applications of quantum combs. We show that the first class, called Choi divergences, does not satisfy an important data processing inequality, while the second one, which we call generalized divergences, does. We also extend to quantum combs some other relevant results of generalized divergences of quantum channels. Finally, given the properties we proved, we argue that generalized divergences may be more adequate than Choi divergences for distinguishing quantum combs in most of their applications. Particularly, this is crucial for defining monotones for resource theories whose states have a comb structure, such as resource theories of quantum processes and resource theories of quantum strategies.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Entanglement measures for two-particle quantum histories [0.0]
We prove that bipartite quantum histories are entangled if and only if the Schmidt rank of this matrix is larger than 1.
We then illustrate the non-classical nature of entangled histories with the use of Hardy's overlapping interferometers.
arXiv Detail & Related papers (2022-12-14T20:48:36Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Perfect discrimination of quantum measurements using entangled systems [0.0]
We investigate the problem of single-shot discrimination of quantum measurements using two strategies.
One based on single quantum systems and the other one based on entangled quantum systems.
We show that any advantage in measurement discrimination tasks over single systems is a demonstration of Einstein-Podolsky-Rosen 'quantum steering'
arXiv Detail & Related papers (2020-12-13T14:30:06Z) - Genuine Multipartite Entanglement in Time [0.0]
We show that genuine multipartite entanglement in temporal processes can be an emergent phenomenon.
We construct explicit examples of W-type and GHZ-type genuinely multipartite entangled two-time processes.
We show that genuinely entangled processes across multiple times exist for any number of probing times.
arXiv Detail & Related papers (2020-11-18T15:26:42Z) - On contraction coefficients, partial orders and approximation of
capacities for quantum channels [2.9005223064604073]
We revisit the notion of contraction coefficients of quantum channels, which provide sharper and specialized versions of the data processing inequality.
A concept closely related to data processing is partial orders on quantum channels.
arXiv Detail & Related papers (2020-11-11T18:11:15Z) - Distribution of quantum coherence and quantum phase transition in the
Ising system [2.318473106845779]
Quantifying quantum coherence of a given system plays an important role in quantum information science.
We propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence.
arXiv Detail & Related papers (2020-01-29T07:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.