GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI
- URL: http://arxiv.org/abs/2407.15719v3
- Date: Wed, 29 Jan 2025 06:35:34 GMT
- Title: GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI
- Authors: Zhaojie Fang, Shenghao Zhu, Yifei Chen, Binfeng Zou, Fan Jia, Chang Liu, Xiang Feng, Linwei Qiu, Feiwei Qin, Jin Fan, Changbiao Chu, Changmiao Wang,
- Abstract summary: Alzheimer's Disease (AD) is a progressive, irreversible neurodegenerative disorder that often originates from Mild Cognitive Impairment (MCI)
The GFE-Mamba model effectively predicts the progression from MCI to AD and surpasses several leading methods in the field.
- Score: 5.834776094182435
- License:
- Abstract: Alzheimer's Disease (AD) is a progressive, irreversible neurodegenerative disorder that often originates from Mild Cognitive Impairment (MCI). This progression results in significant memory loss and severely affects patients' quality of life. Clinical trials have consistently shown that early and targeted interventions for individuals with MCI may slow or even prevent the advancement of AD. Research indicates that accurate medical classification requires diverse multimodal data, including detailed assessment scales and neuroimaging techniques like Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). However, simultaneously collecting the aforementioned three modalities for training presents substantial challenges. To tackle these difficulties, we propose GFE-Mamba, a multimodal classifier founded on Generative Feature Extractor. The intermediate features provided by this Extractor can compensate for the shortcomings of PET and achieve profound multimodal fusion in the classifier. The Mamba block, as the backbone of the classifier, enables it to efficiently extract information from long-sequence scale information. Pixel-level Bi-cross Attention supplements pixel-level information from MRI and PET. We provide our rationale for developing this cross-temporal progression prediction dataset and the pre-trained Extractor weights. Our experimental findings reveal that the GFE-Mamba model effectively predicts the progression from MCI to AD and surpasses several leading methods in the field. Our source code is available at https://github.com/Tinysqua/GFE-Mamba.
Related papers
- ITCFN: Incomplete Triple-Modal Co-Attention Fusion Network for Mild Cognitive Impairment Conversion Prediction [12.893857146169045]
Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly.
Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD.
arXiv Detail & Related papers (2025-01-20T05:12:31Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
arXiv Detail & Related papers (2023-10-25T19:02:57Z) - Interpretable Weighted Siamese Network to Predict the Time to Onset of
Alzheimer's Disease from MRI Images [5.10606091329134]
We re-frame brain image classification as an ordinal classification task to predict how close a patient is to the severe AD stage.
We select progressive MCI patients from the Alzheimer's Disease Neuroimaging Initiative dataset.
We train a Siamese network model to predict the time to onset of AD based on MRI brain images.
arXiv Detail & Related papers (2023-04-14T12:36:43Z) - Multiple Instance Ensembling For Paranasal Anomaly Classification In The
Maxillary Sinus [46.1292414445895]
Paranasal anomalies can present with a wide range of morphological features.
Current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time.
We investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary (MS) and MS with polyps or cysts.
arXiv Detail & Related papers (2023-03-31T09:23:27Z) - Is a PET all you need? A multi-modal study for Alzheimer's disease using
3D CNNs [3.678164468512092]
Alzheimer's Disease (AD) is the most common form of dementia and often difficult to diagnose due to the multifactorial etiology of dementia.
Recent works on neuroimaging-based computer-aided diagnosis with deep neural networks (DNNs) showed that fusing structural magnetic resonance images (sMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) leads to improved accuracy in a study population of healthy controls and subjects with AD.
We argue that future work on multi-modal fusion should systematically assess the contribution of individual modalities following our proposed evaluation framework.
arXiv Detail & Related papers (2022-07-05T14:55:56Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - MRI-based Alzheimer's disease prediction via distilling the knowledge in
multi-modal data [0.0]
We propose a multi-modal multi-instance distillation scheme, which aims to distill the knowledge learned from multi-modal data to an MRI-based network for MCI conversion prediction.
To our best knowledge, this is the first study that attempts to improve an MRI-based prediction model by leveraging extra supervision distilled from multi-modal information.
arXiv Detail & Related papers (2021-04-08T09:06:39Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.