論文の概要: Enhancing Cell Instance Segmentation in Scanning Electron Microscopy Images via a Deep Contour Closing Operator
- arxiv url: http://arxiv.org/abs/2407.15817v1
- Date: Mon, 22 Jul 2024 17:32:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 13:51:10.697238
- Title: Enhancing Cell Instance Segmentation in Scanning Electron Microscopy Images via a Deep Contour Closing Operator
- Title(参考訳): 深部輪郭閉鎖演算子を用いた走査型電子顕微鏡画像におけるセルインスタンスセグメンテーションの促進
- Authors: Florian Robert, Alexia Calovoulos, Laurent Facq, Fanny Decoeur, Etienne Gontier, Christophe F. Grosset, Baudouin Denis de Senneville,
- Abstract要約: そこで本研究では,SEM画像のインスタンスベースセルセグメンテーションを改善するために,境界線を精製するAI駆動方式を提案する。
CNN COp-Netは、細胞輪郭のギャップに対処するために導入され、不十分な情報や欠落した情報のある領域で効果的に満たされる。
PDX肝芽腫組織からのプライベートSEM画像と公開画像データセットの両方を用いて,細胞境界の精度を高めるためのアプローチの有効性を示した。
- 参考スコア(独自算出の注目度): 0.04568852250743578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately segmenting and individualizing cells in SEM images is a highly promising technique for elucidating tissue architecture in oncology. While current AI-based methods are effective, errors persist, necessitating time-consuming manual corrections, particularly in areas where the quality of cell contours in the image is poor and requires gap filling. This study presents a novel AI-driven approach for refining cell boundary delineation to improve instance-based cell segmentation in SEM images, also reducing the necessity for residual manual correction. A CNN COp-Net is introduced to address gaps in cell contours, effectively filling in regions with deficient or absent information. The network takes as input cell contour probability maps with potentially inadequate or missing information and outputs corrected cell contour delineations. The lack of training data was addressed by generating low integrity probability maps using a tailored PDE. We showcase the efficacy of our approach in augmenting cell boundary precision using both private SEM images from PDX hepatoblastoma tissues and publicly accessible images datasets. The proposed cell contour closing operator exhibits a notable improvement in tested datasets, achieving respectively close to 50% (private data) and 10% (public data) increase in the accurately-delineated cell proportion compared to state-of-the-art methods. Additionally, the need for manual corrections was significantly reduced, therefore facilitating the overall digitalization process. Our results demonstrate a notable enhancement in the accuracy of cell instance segmentation, particularly in highly challenging regions where image quality compromises the integrity of cell boundaries, necessitating gap filling. Therefore, our work should ultimately facilitate the study of tumour tissue bioarchitecture in onconanotomy field.
- Abstract(参考訳): SEM画像中の正確なセグメンテーションと個別化は、腫瘍学における組織構造を解明するための非常に有望な技術である。
現在のAIベースの手法は有効であるが、エラーは持続し、特に画像中のセルの輪郭の質が悪く、ギャップを埋める必要がある領域において、時間を要する手動修正が必要になる。
本研究では,SEM画像のインスタンスベースセルセグメンテーションを改善するために,新たなAIによる境界線修正手法を提案する。
CNN COp-Netは、細胞輪郭のギャップに対処するために導入され、不十分な情報や欠落した情報のある領域で効果的に満たされる。
ネットワークは、入力セルの輪郭確率マップとして、潜在的に不十分または欠落した情報を取り込み、修正セルの輪郭デラインを出力する。
トレーニングデータの欠如は、カスタマイズされたPDEを用いて、低整合性確率マップを生成することで対処された。
PDX肝芽腫組織からのプライベートSEM画像と公開画像データセットの両方を用いて,細胞境界の精度を高めるためのアプローチの有効性を示した。
提案したセル輪郭閉鎖演算子は、テストデータセットにおいて顕著な改善を示し、それぞれ50%(プライベートデータ)と10%(パブリックデータ)の精度向上を実現している。
さらに、手動修正の必要性が大幅に低減され、全体的なデジタル化プロセスが促進された。
画像品質がセル境界の整合性を損なう極めて困難な領域では, セルインスタンスのセグメンテーションの精度が顕著に向上し, ギャップを埋める必要が生じた。
そこで本研究は,腫瘍組織における生体組織構造の研究を促進することを目的としている。
関連論文リスト
- Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
本稿では,一段階の効率的なセルトラッキングを実現するために,新しいエンドツーエンドCAPフレームワークを提案する。
CAPは検出またはセグメンテーション段階を放棄し、細胞点の軌跡間の相関を利用して細胞を共同で追跡することでプロセスを単純化する。
Capは強力なセルトラッキング性能を示し、既存の方法の10倍から55倍の効率を示している。
論文 参考訳(メタデータ) (2024-11-22T10:16:35Z) - Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
多重イメージング(MI)は、複数の生物学的マーカーを、細胞内解像度で別々のイメージングチャネルで同時に可視化することを可能にする。
本稿では,グループ化畳み込みを利用して各画像チャンネルから解釈可能な埋め込み特徴を学習するセグメンテーションフリーなディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-11-02T11:21:33Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation [0.0]
深層学習(DL)は細胞セグメンテーションタスクにおいて強力なポテンシャルを示すが、一般化が不十分である。
本稿では,Multi-Microscopic-view Cell semi-supervised (MMCS) と呼ばれる,新しい半教師付き細胞分割法を提案する。
MMCSは、マイクロスコープの異なる低ラベルの多姿勢細胞画像を用いて、細胞セグメンテーションモデルを訓練することができる。
F1スコアは0.8239であり、全てのケースのランニング時間は許容時間の範囲内である。
論文 参考訳(メタデータ) (2023-03-21T08:08:13Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Accurate Cell Segmentation in Digital Pathology Images via Attention
Enforced Networks [0.0]
本研究では,グローバルな依存関係と重み付きチャネルを適応的に統合するアテンション強化ネットワーク(AENet)を提案する。
実験段階では, 染色変化問題に対処するために, 個々の色正規化法を提案する。
論文 参考訳(メタデータ) (2020-12-14T03:39:33Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Deeply-Supervised Density Regression for Automatic Cell Counting in
Microscopy Images [9.392002197101965]
顕微鏡画像中の細胞を自動的にカウントする密度回帰に基づく新しい手法を提案する。
提案手法は, 従来のレグレッションベース手法と比較して, 2つのイノベーションを処理している。
4つのデータセットで評価した実験により,提案手法の優れた性能が示された。
論文 参考訳(メタデータ) (2020-11-07T04:02:47Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
マルチタスク学習パラダイムにおけるセルセグメンテーションのための新しい教師付き手法を提案する。
ネットワークの予測効率を向上させるために、領域とセル境界検出に基づくマルチタスク損失の組み合わせを用いる。
検証セットで全体のDiceスコアが0.93であり、これは最近の教師なし手法で15.9%以上の改善であり、一般的な教師付きU-netアルゴリズムを平均5.8%以上上回っている。
論文 参考訳(メタデータ) (2020-05-19T11:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。