A Survey on Trustworthiness in Foundation Models for Medical Image Analysis
- URL: http://arxiv.org/abs/2407.15851v2
- Date: Mon, 7 Oct 2024 02:03:30 GMT
- Title: A Survey on Trustworthiness in Foundation Models for Medical Image Analysis
- Authors: Congzhen Shi, Ryan Rezai, Jiaxi Yang, Qi Dou, Xiaoxiao Li,
- Abstract summary: We present a novel taxonomy of foundation models used in medical imaging.
We focus on segmentation, medical report generation, medical question and answering (Q&A), and disease diagnosis.
Our analysis underscores the imperative for advancing towards trustworthy AI in medical image analysis.
- Score: 27.876946673940452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of foundation models in medical imaging represents a significant leap toward enhancing diagnostic accuracy and personalized treatment. However, the deployment of foundation models in healthcare necessitates a rigorous examination of their trustworthiness, encompassing privacy, robustness, reliability, explainability, and fairness. The current body of survey literature on foundation models in medical imaging reveals considerable gaps, particularly in the area of trustworthiness. Additionally, existing surveys on the trustworthiness of foundation models do not adequately address their specific variations and applications within the medical imaging domain. This survey aims to fill that gap by presenting a novel taxonomy of foundation models used in medical imaging and analyzing the key motivations for ensuring their trustworthiness. We review current research on foundation models in major medical imaging applications, focusing on segmentation, medical report generation, medical question and answering (Q\&A), and disease diagnosis. These areas are highlighted because they have seen a relatively mature and substantial number of foundation models compared to other applications. We focus on literature that discusses trustworthiness in medical image analysis manuscripts. We explore the complex challenges of building trustworthy foundation models for each application, summarizing current concerns and strategies for enhancing trustworthiness. Furthermore, we examine the potential of these models to revolutionize patient care. Our analysis underscores the imperative for advancing towards trustworthy AI in medical image analysis, advocating for a balanced approach that fosters innovation while ensuring ethical and equitable healthcare delivery.
Related papers
- Deep Generative Models for 3D Medical Image Synthesis [1.931185411277237]
Deep generative modeling has emerged as a powerful tool for synthesizing realistic medical images.
This chapter explores various deep generative models for 3D medical image synthesis.
arXiv Detail & Related papers (2024-10-23T08:33:23Z) - CARES: A Comprehensive Benchmark of Trustworthiness in Medical Vision Language Models [92.04812189642418]
We introduce CARES and aim to evaluate the Trustworthiness of Med-LVLMs across the medical domain.
We assess the trustworthiness of Med-LVLMs across five dimensions, including trustfulness, fairness, safety, privacy, and robustness.
arXiv Detail & Related papers (2024-06-10T04:07:09Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Empirical Analysis of a Segmentation Foundation Model in Prostate
Imaging [9.99042549094606]
We consider a recently developed foundation model for medical image segmentation, UniverSeg.
We conduct an empirical evaluation study in the context of prostate imaging and compare it against the conventional approach of training a task-specific segmentation model.
arXiv Detail & Related papers (2023-07-06T20:00:52Z) - On the Challenges and Perspectives of Foundation Models for Medical
Image Analysis [17.613533812925635]
Medical foundation models have immense potential in solving a wide range of downstream tasks.
They can help to accelerate the development of accurate and robust models, reduce the large amounts of required labeled data, preserve the privacy and confidentiality of patient data.
arXiv Detail & Related papers (2023-06-09T06:54:58Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIA is a trustworthy deep learning framework for medical image analysis.
It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
arXiv Detail & Related papers (2022-12-06T05:30:22Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
Building generative models for medical images that faithfully depict clinical context may help alleviate the paucity of healthcare datasets.
We explore the sub-components of the Stable Diffusion pipeline to fine-tune the model to generate medical images.
Our best-performing model improves upon the stable diffusion baseline and can be conditioned to insert a realistic-looking abnormality on a synthetic radiology image.
arXiv Detail & Related papers (2022-10-09T01:43:08Z) - Towards Trustworthy Healthcare AI: Attention-Based Feature Learning for
COVID-19 Screening With Chest Radiography [70.37371604119826]
Building AI models with trustworthiness is important especially in regulated areas such as healthcare.
Previous work uses convolutional neural networks as the backbone architecture, which has shown to be prone to over-caution and overconfidence in making decisions.
We propose a feature learning approach using Vision Transformers, which use an attention-based mechanism.
arXiv Detail & Related papers (2022-07-19T14:55:42Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.