A Survey of AI-Powered Mini-Grid Solutions for a Sustainable Future in Rural Communities
- URL: http://arxiv.org/abs/2407.15865v1
- Date: Wed, 17 Jul 2024 20:23:38 GMT
- Title: A Survey of AI-Powered Mini-Grid Solutions for a Sustainable Future in Rural Communities
- Authors: Craig Pirie, Harsha Kalutarage, Muhammad Shadi Hajar, Nirmalie Wiratunga, Subodha Charles, Geeth Sandaru Madhushan, Priyantha Buddhika, Supun Wijesiriwardana, Akila Dimantha, Kithdara Hansamal, Shalitha Pathiranage,
- Abstract summary: This paper reviews various forecasting models, including statistical methods, machine learning algorithms, and hybrid approaches.
It explores public datasets and tools such as Prophet, NeuralProphet, and N-BEATS for model implementation and validation.
The survey concludes with recommendations for future research, addressing challenges in model adaptation and optimisation for real-world applications.
- Score: 0.18783379094746652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive survey of AI-driven mini-grid solutions aimed at enhancing sustainable energy access. It emphasises the potential of mini-grids, which can operate independently or in conjunction with national power grids, to provide reliable and affordable electricity to remote communities. Given the inherent unpredictability of renewable energy sources such as solar and wind, the necessity for accurate energy forecasting and management is discussed, highlighting the role of advanced AI techniques in forecasting energy supply and demand, optimising grid operations, and ensuring sustainable energy distribution. This paper reviews various forecasting models, including statistical methods, machine learning algorithms, and hybrid approaches, evaluating their effectiveness for both short-term and long-term predictions. Additionally, it explores public datasets and tools such as Prophet, NeuralProphet, and N-BEATS for model implementation and validation. The survey concludes with recommendations for future research, addressing challenges in model adaptation and optimisation for real-world applications.
Related papers
- Just In Time Transformers [2.7350304370706797]
JITtrans is a novel transformer deep learning model that significantly improves energy consumption forecasting accuracy.
Our findings highlight the potential of advanced predictive technologies to revolutionize energy management and advance sustainable power systems.
arXiv Detail & Related papers (2024-10-22T10:33:00Z) - Strategizing EV Charging and Renewable Integration in Texas [2.429429123532487]
This study explores the convergence of electric vehicles (EVs), renewable energy, and smart grid technologies in the context of Texas.
Research focuses on grid stability concerns, uncoordinated charging patterns, and the complicated relationship between EVs and renewable energy sources.
arXiv Detail & Related papers (2023-10-25T23:34:25Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Predicting Short Term Energy Demand in Smart Grid: A Deep Learning Approach for Integrating Renewable Energy Sources in Line with SDGs 7, 9, and 13 [0.0]
We propose a deep learning model for predicting energy demand in a smart power grid.
We use long short-term memory networks to capture complex patterns and dependencies in energy demand data.
The proposed model can accurately predict energy demand with a mean absolute error of 1.4%.
arXiv Detail & Related papers (2023-04-08T12:30:59Z) - Combating Uncertainties in Wind and Distributed PV Energy Sources Using
Integrated Reinforcement Learning and Time-Series Forecasting [2.774390661064003]
unpredictability of renewable energy generation poses challenges for electricity providers and utility companies.
We propose a novel framework with two objectives: (i) combating uncertainty of renewable energy in smart grid by leveraging time-series forecasting with Long-Short Term Memory (LSTM) solutions, and (ii) establishing distributed and dynamic decision-making framework with multi-agent reinforcement learning using Deep Deterministic Policy Gradient (DDPG) algorithm.
arXiv Detail & Related papers (2023-02-27T19:12:50Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
Agent-based simulations are used to better understand the dynamics of the electricity market.
Agent-based models provide the opportunity to integrate machine learning and artificial intelligence.
We review 55 papers published between 2016 and 2021 which focus on machine learning applied to agent-based electricity market models.
arXiv Detail & Related papers (2022-06-05T14:52:26Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Deep generative modeling for probabilistic forecasting in power systems [34.70329820717658]
This study uses a recent deep learning technique, the normalizing flows, to produce accurate probabilistic forecasts.
We show that our methodology is competitive with other state-of-the-art deep learning generative models.
arXiv Detail & Related papers (2021-06-17T10:41:57Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.