Ensemble quantile-based deep learning framework for streamflow and flood prediction in Australian catchments
- URL: http://arxiv.org/abs/2407.15882v2
- Date: Tue, 11 Feb 2025 04:41:10 GMT
- Title: Ensemble quantile-based deep learning framework for streamflow and flood prediction in Australian catchments
- Authors: Rohitash Chandra, Arpit Kapoor, Siddharth Khedkar, Jim Ng, R. Willem Vervoort,
- Abstract summary: In recent years, climate extremes such as floods have created significant environmental and economic hazards for Australia.
Deep learning methods have been promising for predicting extreme climate events; however, large flooding events present a critical challenge.
We present an ensemble quantile-based deep learning framework that addresses large-scale streamflow forecasts.
- Score: 0.31666540219908274
- License:
- Abstract: In recent years, climate extremes such as floods have created significant environmental and economic hazards for Australia. Deep learning methods have been promising for predicting extreme climate events; however, large flooding events present a critical challenge due to factors such as model calibration and missing data. We present an ensemble quantile-based deep learning framework that addresses large-scale streamflow forecasts using quantile regression for uncertainty projections in prediction. We evaluate selected univariate and multivariate deep learning models and catchment strategies. Furthermore, we implement a multistep time-series prediction model using the CAMELS dataset for selected catchments across Australia. The ensemble model employs a set of quantile deep learning models for streamflow determined by historical streamflow data. We utilise the streamflow prediction and obtain flood probability using flood frequency analysis and compare it with historical flooding events for selected catchments. Our results demonstrate notable efficacy and uncertainties in streamflow forecasts with varied catchment properties. Our flood probability estimates show good accuracy in capturing the historical floods from the selected catchments. This underscores the potential for our deep learning framework to revolutionise flood forecasting across diverse regions and be implemented as an early warning system.
Related papers
- TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
Hydrometric prediction of water quantity is useful for a variety of applications, including water management, flood forecasting, and flood control.
We propose atemporal forecasting model that augments the hidden state in Graph Convolution Recurrent Neural Network (GCRN) encoder-decoder.
We present a new benchmark dataset of water flow from a network of Canadian stations on rivers, streams, and lakes.
arXiv Detail & Related papers (2023-12-10T18:23:40Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
We propose a machine learning-based approach for predicting water flow intensities in inland watercourses.
We are the first to tackle the task of dense water flow intensity prediction.
arXiv Detail & Related papers (2023-04-04T09:28:36Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Experimental study of time series forecasting methods for groundwater
level prediction [0.0]
We created a dataset of 1026 groundwater level time series.
Each time series is made of daily measurements of groundwater levels and two variables, rainfall and evapotranspiration.
We compared different predictors including local and global time series forecasting methods.
Our result analysis shows that the best predictions are obtained by training a global method on past groundwater levels and rainfall data.
arXiv Detail & Related papers (2022-09-28T08:58:55Z) - Neural Networks for Extreme Quantile Regression with an Application to Forecasting of Flood Risk [0.0]
We propose the EQRN model that combines tools from neural networks and extreme value theory.
We apply this method to forecast flood risk in the Swiss Aare catchment.
arXiv Detail & Related papers (2022-08-16T08:02:49Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Multioutput Gaussian Processes with Functional Data: A Study on Coastal
Flood Hazard Assessment [0.0]
We introduce a surrogate model that accounts for time-varying inputs and provides information on spatially varying inland flooding.
In several experiments, we demonstrate the versatility of the model for both learning maps and inferring unobserved maps.
We conclude that our framework is a promising approach for forecast and early-warning systems.
arXiv Detail & Related papers (2020-07-28T08:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.