論文の概要: An Ad-hoc graph node vector embedding algorithm for general knowledge graphs using Kinetica-Graph
- arxiv url: http://arxiv.org/abs/2407.15906v1
- Date: Mon, 22 Jul 2024 14:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 21:34:58.512689
- Title: An Ad-hoc graph node vector embedding algorithm for general knowledge graphs using Kinetica-Graph
- Title(参考訳): Kinetica-Graphを用いた一般知識グラフのアドホックグラフノードベクトル埋め込みアルゴリズム
- Authors: B. Kaan Karamete, Eli Glaser,
- Abstract要約: 本稿では,知識グラフ表現から一般的なグラフノードの埋め込みを生成する方法について論じる。
埋め込み空間は、局所親和性とリモート構造関連性の両方を模倣するいくつかのサブ機能から構成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper discusses how to generate general graph node embeddings from knowledge graph representations. The embedded space is composed of a number of sub-features to mimic both local affinity and remote structural relevance. These sub-feature dimensions are defined by several indicators that we speculate to catch nodal similarities, such as hop-based topological patterns, the number of overlapping labels, the transitional probabilities (markov-chain probabilities), and the cluster indices computed by our recursive spectral bisection (RSB) algorithm. These measures are flattened over the one dimensional vector space into their respective sub-component ranges such that the entire set of vector similarity functions could be used for finding similar nodes. The error is defined by the sum of pairwise square differences across a randomly selected sample of graph nodes between the assumed embeddings and the ground truth estimates as our novel loss function. The ground truth is estimated to be a combination of pairwise Jaccard similarity and the number of overlapping labels. Finally, we demonstrate a multi-variate stochastic gradient descent (SGD) algorithm to compute the weighing factors among sub-vector spaces to minimize the average error using a random sampling logic.
- Abstract(参考訳): 本稿では,知識グラフ表現から一般的なグラフノードの埋め込みを生成する方法について論じる。
埋め込み空間は、局所親和性とリモート構造関連性の両方を模倣するいくつかのサブ機能から構成される。
これらのサブフィーチャー次元は、ホップベースのトポロジカルパターン、重なり合うラベルの数、遷移確率(マルコフ連鎖確率)、再帰的スペクトル二分法(RSB)アルゴリズムによって計算されたクラスタ指標など、いくつかの指標によって定義される。
これらの測度は1次元のベクトル空間上でそれぞれの部分成分範囲に平坦化され、ベクトル類似関数全体の集合が類似ノードを見つけるのに使用できる。
この誤差は、仮定された埋め込みと基底真理推定とのランダムに選択されたグラフノードのサンプルの対角差の和によって定義される。
基礎的な真実は、ペアワイズ・ジャカードの類似性と重なり合うラベルの数の組み合わせであると推定される。
最後に,多変量確率勾配勾配(SGD)アルゴリズムを用いて,ベクトル空間間の重み付け係数を計算し,ランダムサンプリング論理を用いて平均誤差を最小化する。
関連論文リスト
- Graph Fourier MMD for Signals on Graphs [67.68356461123219]
本稿では,グラフ上の分布と信号の間の新しい距離を提案する。
GFMMDは、グラフ上で滑らかであり、期待差を最大化する最適な目撃関数によって定義される。
グラフベンチマークのデータセットと単一セルRNAシークエンシングデータ解析について紹介する。
論文 参考訳(メタデータ) (2023-06-05T00:01:17Z) - Hierarchical Multiresolution Feature- and Prior-based Graphs for
Classification [3.1219977244201056]
多分解能近傍グラフの3つの変種と階層的条件付きランダムフィールドのグラフの分類問題を定式化した。
これらのグラフはそれぞれ重み付けされ、無向的であり、したがって空間的あるいは階層的な関係をあらゆる方向に組み込むことができた。
空間特徴に基づく部分グラフのエッジ重みを導出する新しいメカニズムを用いてランダムなウォーカーグラフ上に拡張した。
論文 参考訳(メタデータ) (2023-06-03T15:58:38Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
学習ノード表現は、コミュニティ検出やノード分類などのグラフ解析において、さまざまな下流タスクの恩恵を受ける。
教師なしの方法でノード表現を学習するための幾何学グラフ表現学習(G2R)を提案する。
G2R は異なるグループ内のノードを異なる部分空間にマッピングし、各部分空間はコンパクトで異なる部分空間が分散される。
論文 参考訳(メタデータ) (2022-02-13T07:46:24Z) - SIGMA: A Structural Inconsistency Reducing Graph Matching Algorithm [21.1095092767297]
グラフマッチングの精度、構造的不整合(SI)を測定するための新しい基準を提案する。
具体的には、SIは、グラフのマルチホップ構造に対応するために熱拡散ウェーブレットを組み込む。
ミラー降下法を用いて,新しいK-ホップ構造に基づくマッチングコストでGromov-Wasserstein距離を解くことにより,SIGMAを導出可能であることを示す。
論文 参考訳(メタデータ) (2022-02-06T15:18:37Z) - Entropic Optimal Transport in Random Graphs [8.7314407902481]
グラフ解析において、古典的なタスクはノード間の(グループの)類似性の計算によって構成される。
潜在空間におけるノード群間の距離を連続的に推定することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-11T13:52:34Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z) - COLOGNE: Coordinated Local Graph Neighborhood Sampling [1.6498361958317633]
グラフノードのような個別の未順序オブジェクトを実数値ベクトルで置き換えることは、グラフデータから学ぶための多くのアプローチの中心である。
ノードベクトル表現の座標がグラフノードであるような離散ノード埋め込みを学習する問題に対処する。
これにより、ノードにもともと存在するすべての属性が保存されているため、グラフの解釈可能な機械学習アルゴリズムを設計する扉が開く。
論文 参考訳(メタデータ) (2021-02-09T11:39:06Z) - Scaling Graph Clustering with Distributed Sketches [1.1011268090482575]
スペクトルクラスタリングにインスパイアされた手法として,ランダムな次元還元プロジェクションから得られた行列スケッチを用いる。
提案手法は,完全に動的なブロックモデルストリームが与えられた場合,性能の高いクラスタリング結果が得られる埋め込みを生成する。
また、ブロックモデルパラメータがその後の埋め込みの必要次元に与える影響についても検討し、ランダムなプロジェクションが分散メモリにおけるグラフクラスタリングの性能を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2020-07-24T17:38:04Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
グラフ識別(GI)は、グラフ学習において長い間研究されており、特定の応用において不可欠である。
本稿では,逆グラフ識別(Inverse Graph Identification, IGI)と呼ばれる新しい問題を定義する。
本稿では,グラフアテンションネットワーク(GAT)を用いたノードレベルのメッセージパッシング処理を,GIのプロトコルの下でシンプルかつ効果的に行う方法を提案する。
論文 参考訳(メタデータ) (2020-07-12T12:06:17Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。