論文の概要: Reinforcement Learning Pair Trading: A Dynamic Scaling approach
- arxiv url: http://arxiv.org/abs/2407.16103v1
- Date: Tue, 23 Jul 2024 00:16:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 19:05:22.000306
- Title: Reinforcement Learning Pair Trading: A Dynamic Scaling approach
- Title(参考訳): 強化学習ペアトレーディング - 動的スケーリングアプローチ
- Authors: Hongshen Yang, Avinash Malik,
- Abstract要約: 暗号通貨の取引は、暗号市場固有のボラティリティのために困難である。
この作業では、強化学習(RL)とペアトレーディングを組み合わせています。
以上の結果から,RLは暗号通貨などの不安定な市場に適用した場合,手動および従来型のペア取引技術よりも大幅に優れることが示された。
- 参考スコア(独自算出の注目度): 3.4698840925433774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cryptocurrency is a cryptography-based digital asset with extremely volatile prices. Around $70 billion worth of crypto-currency is traded daily on exchanges. Trading crypto-currency is difficult due to the inherent volatility of the crypto-market. In this work, we want to test the hypothesis: "Can techniques from artificial intelligence help with algorithmically trading cryptocurrencies?". In order to address this question, we combine Reinforcement Learning (RL) with pair trading. Pair trading is a statistical arbitrage trading technique which exploits the price difference between statistically correlated assets. We train reinforcement learners to determine when and how to trade pairs of cryptocurrencies. We develop new reward shaping and observation/action spaces for reinforcement learning. We performed experiments with the developed reinforcement learner on pairs of BTC-GBP and BTC-EUR data separated by 1-minute intervals (n = 263,520). The traditional non-RL pair trading technique achieved an annualised profit of 8.33%, while the proposed RL-based pair trading technique achieved annualised profits from 9.94% - 31.53%, depending upon the RL learner. Our results show that RL can significantly outperform manual and traditional pair trading techniques when applied to volatile markets such as cryptocurrencies.
- Abstract(参考訳): 暗号通貨は暗号ベースのデジタル資産であり、非常に不安定な価格である。
700億ドル相当の暗号通貨が取引所で毎日取引されている。
暗号通貨の取引は、暗号市場固有のボラティリティのために困難である。
この研究で我々は、「人工知能のCan Techniqueは暗号通貨をアルゴリズムで取引するのに役立つか?」という仮説を検証したい。
この問題に対処するために、強化学習(RL)とペアトレーディングを組み合わせる。
ペアトレーディングは統計的に相関した資産間の価格差を利用する統計仲裁取引技術である。
私たちは、暗号通貨のペアをいつ、どのように取引するかを決定するために、強化学習者を訓練します。
我々は、強化学習のための新たな報酬形成と観察・行動空間を開発する。
1分間隔 (n = 263,520) で分割したBTC-GBPとBTC-EURのペアを用いた強化学習実験を行った。
従来の非RLペアトレーディング技術は年間利益8.33%、提案されたRLベースのペアトレーディング技術は年間利益9.94%から31.53%を達成した。
以上の結果から,RLは暗号通貨などの不安定な市場に適用した場合,手動および従来型のペア取引技術よりも大幅に優れることが示された。
関連論文リスト
- IT Strategic alignment in the decentralized finance (DeFi): CBDC and digital currencies [49.1574468325115]
分散型金融(DeFi)は、ディスラプティブベースの金融インフラである。
1) DeFiの一般的なIT要素は何か?
2) DeFi における IT 戦略の整合性には,どのような要素があるのでしょう?
論文 参考訳(メタデータ) (2024-05-17T10:19:20Z) - Interplay between Cryptocurrency Transactions and Online Financial
Forums [41.94295877935867]
本研究は、これらの暗号掲示板間の相互作用と暗号値の変動に関する研究に焦点をあてる。
これは、Bitcointalkフォーラムの活動がBTCの値のトレンドと直接的な関係を保っていることを示している。
この実験は、フォーラムデータが金融分野における特定の出来事を説明することを強調している。
論文 参考訳(メタデータ) (2023-11-27T16:25:28Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - AI-Assisted Investigation of On-Chain Parameters: Risky Cryptocurrencies
and Price Factors [0.9831489366502302]
本稿では,歴史的データの解析と,オンチェーンパラメータを用いた人工知能アルゴリズムについて述べる。
歴史的暗号通貨のオンチェーンデータの解析を行い,価格と他のパラメータの相関性を測定した。
分析の結果,暗号通貨価格と最大供給量と総供給量との間に有意な負の相関がみられ,価格と24時間取引量との間には弱い正の相関が認められた。
論文 参考訳(メタデータ) (2023-08-11T09:20:28Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum
Blockchain [59.0626764544669]
非Fungible Token(NFT)市場は2021年に爆発的に成長し、2022年1月には月間貿易額が60億ドルに達した。
ウォッシュトレーディングの可能性に関する懸念が浮かび上がっており、あるパーティがNFTを取引してそのボリュームを人為的に膨らませる市場操作の形式である。
洗濯物取引は全NFTコレクションの5.66%に影響し、総生産量は3,406,110,774ドルである。
論文 参考訳(メタデータ) (2022-12-02T15:03:35Z) - Algorithmic Trading Using Continuous Action Space Deep Reinforcement
Learning [11.516147824168732]
本稿では、Twin-Delayed DDPG(TD3)と日替わり価格を用いて、株式および暗号通貨市場でのトレーディング戦略を実現するためのアプローチを提案する。
本研究では,株式(Amazon)と暗号通貨(Bitcoin)の両市場を対象とし,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-07T11:42:31Z) - Cryptocurrency Valuation: An Explainable AI Approach [0.8566457170664925]
本稿では、独自のブロックチェーン会計手法を用いて、新しい市場間投資比率、価格対実用率(PU)比率を提案する。
PU比は、代替手段よりも長期のbitcoinリターンを効果的に予測する。
本稿では、従来の買い取り戦略や市場刺激戦略よりも優れたPU比による自動取引戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T19:01:23Z) - Exploration of Algorithmic Trading Strategies for the Bitcoin Market [1.933681537640272]
この取り組みは、Bitcoin市場にアルゴリズムによるトレーディングのアプローチをもたらし、その価格の変動を日々利用している。
我々は,2021年第1四半期を通じて収集された全く見えないデータに基づいて,実世界のトレーディング戦略を用いてモデルを実証的に評価した。
モデルの平均利益は86%で、従来の買い取り戦略と一致した。
論文 参考訳(メタデータ) (2021-10-28T08:13:34Z) - The Doge of Wall Street: Analysis and Detection of Pump and Dump
Cryptocurrency Manipulations [63.732639864601914]
本稿では,インターネット上のコミュニティによって組織された2つの市場操作(ポンプとダンプと群衆ポンプ)について,詳細な分析を行う。
ポンプとダンプの仕組みは、株式市場と同じくらい古い詐欺だ。今や、緩やかに規制された暗号通貨市場において、新たな活力を得た。
ポンプとダンプの3つのケーススタディについて報告します。次に、検証済みポンプとダンプのユニークなデータセットを利用して、開始から25秒でポンプとダンプを検出する機械学習モデルを構築します。
論文 参考訳(メタデータ) (2021-05-03T10:20:47Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency
Market Manipulations [63.732639864601914]
インターネット上のコミュニティによって組織されたポンプとダンプの詳細な分析を行う。
これらのコミュニティがどのように組織化され、どのように詐欺を行うかを観察します。
本研究では,不正行為をリアルタイムに検出する手法を提案する。
論文 参考訳(メタデータ) (2020-05-04T21:36:18Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
本論文は,近年の株式市場予測にディープラーニングを用いた成功に触発されたものである。
暗号通貨市場の特徴を高周波で分析・提示する。
私たちは、Bitcoinと米ドルのライブ為替レートの中間価格運動の予測について、一貫した78%の精度を達成しました。
論文 参考訳(メタデータ) (2020-02-09T20:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。