論文の概要: When, Where, and What? An Novel Benchmark for Accident Anticipation and Localization with Large Language Models
- arxiv url: http://arxiv.org/abs/2407.16277v1
- Date: Tue, 23 Jul 2024 08:29:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 18:06:10.922763
- Title: When, Where, and What? An Novel Benchmark for Accident Anticipation and Localization with Large Language Models
- Title(参考訳): 大規模言語モデルによる事故予知と局所化のための新しいベンチマーク
- Authors: Haicheng Liao, Yongkang Li, Chengyue Wang, Yanchen Guan, KaHou Tam, Chunlin Tian, Li Li, Chengzhong Xu, Zhenning Li,
- Abstract要約: 本研究では,複数の次元にわたる予測能力を高めるために,LLM(Large Language Models)を統合した新しいフレームワークを提案する。
複雑な運転シーンにおけるリスクの高い要素の優先順位を動的に調整する,革新的なチェーンベースアテンション機構を開発した。
DAD, CCD, A3Dデータセットの実証的検証は平均精度(AP)と平均時間到達精度(mTTA)において優れた性能を示す
- 参考スコア(独自算出の注目度): 14.090582912396467
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As autonomous driving systems increasingly become part of daily transportation, the ability to accurately anticipate and mitigate potential traffic accidents is paramount. Traditional accident anticipation models primarily utilizing dashcam videos are adept at predicting when an accident may occur but fall short in localizing the incident and identifying involved entities. Addressing this gap, this study introduces a novel framework that integrates Large Language Models (LLMs) to enhance predictive capabilities across multiple dimensions--what, when, and where accidents might occur. We develop an innovative chain-based attention mechanism that dynamically adjusts to prioritize high-risk elements within complex driving scenes. This mechanism is complemented by a three-stage model that processes outputs from smaller models into detailed multimodal inputs for LLMs, thus enabling a more nuanced understanding of traffic dynamics. Empirical validation on the DAD, CCD, and A3D datasets demonstrates superior performance in Average Precision (AP) and Mean Time-To-Accident (mTTA), establishing new benchmarks for accident prediction technology. Our approach not only advances the technological framework for autonomous driving safety but also enhances human-AI interaction, making predictive insights generated by autonomous systems more intuitive and actionable.
- Abstract(参考訳): 自動運転システムが日々の交通機関の一部になるにつれて、潜在的な交通事故を正確に予測し軽減する能力が最重要である。
従来の事故予測モデルは、主にダッシュカムビデオを利用して、事故の発生時期を予測できるが、事故のローカライズや関連するエンティティの特定には不十分である。
このギャップに対処するため,大規模言語モデル(LLM)を統合した新しいフレームワークを導入する。
複雑な運転シーンにおけるリスクの高い要素の優先順位を動的に調整する,革新的なチェーンベースアテンション機構を開発した。
このメカニズムは、3段階のモデルで補完され、より小さなモデルからの出力をLSMの詳細なマルチモーダル入力に処理することで、トラフィックのダイナミクスをより微妙に理解することができる。
DAD、CCD、A3Dデータセットに対する実証検証は、平均精度(AP)と平均時間到達精度(mTTA)において優れた性能を示し、事故予測技術の新たなベンチマークを確立する。
我々のアプローチは、自動運転安全のための技術枠組みを前進させるだけでなく、人間とAIの相互作用を強化し、自律システムによって生成された予測的洞察をより直感的で実用的なものにします。
関連論文リスト
- Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling [18.071748815365005]
我々は、現在のSOTA(State-of-the-art)2Dベースの手法を超えて予測能力を著しく向上させる革新的なフレームワークであるAccNetを導入する。
本稿では,交通事故データセットにおけるスキュードデータ分散の課題に対処するため,早期予測のためのバイナリ適応損失(BA-LEA)を提案する。
論文 参考訳(メタデータ) (2024-09-02T13:46:25Z) - CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
カメラ映像から周囲の交通機関の事故を正確にかつ迅速に予測することは、自動運転車(AV)の安全性に不可欠である
本研究は, CRASH と呼ばれる, AV の新たな事故予測フレームワークを提案する。
オブジェクト検出、特徴抽出、オブジェクト認識モジュール、コンテキスト認識モジュール、多層融合の5つのコンポーネントをシームレスに統合する。
私たちのモデルは、平均精度(AP)や平均到達時間(mTTA)といった重要な評価指標において、既存のトップベースラインを超えています。
論文 参考訳(メタデータ) (2024-07-25T04:12:49Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
例えば、大規模な言語モデル(LLM)は、インターネットスケールのデータに基づいて訓練され、ゼロショット機能を持つ。
本稿では,潜在的な異常に関する判断を安全な制御フレームワークに組み込む2段階の推論フレームワークを提案する。
これにより、モニターは、四輪車や自動運転車のような動的ロボットシステムの信頼性を向上させることができる。
論文 参考訳(メタデータ) (2024-07-11T17:59:22Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction [12.336412741837407]
本研究は,高度軌跡予測ネットワークとDOS予測モジュールを効果的に組み合わせた,DOS予測のための新しい手法を提案する。
本研究の革新的な貢献は、複雑なシナリオをナビゲートするための新しいDOS予測モデルの開発である。
論文 参考訳(メタデータ) (2024-02-29T17:36:39Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
交通事故予測は、できるだけ早くダッシュカムビデオから事故を予測することを目的としている。
現在の決定論的ディープニューラルネットワークは、誤った予測では過信される可能性がある。
本稿では,関係時間学習を用いた不確実性に基づく事故予測モデルを提案する。
論文 参考訳(メタデータ) (2020-08-01T20:21:48Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。