Deep Learning for Pancreas Segmentation: a Systematic Review
- URL: http://arxiv.org/abs/2407.16313v1
- Date: Tue, 23 Jul 2024 09:05:23 GMT
- Title: Deep Learning for Pancreas Segmentation: a Systematic Review
- Authors: Andrea Moglia, Matteo Cavicchioli, Luca Mainardi, Pietro Cerveri,
- Abstract summary: Many deep learning models for pancreas segmentation have been proposed in the past few years.
Pancreas segmentation has been traditionally challenging due to its small size in computed tomography abdominal volumes.
- Score: 0.5714074111744111
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Pancreas segmentation has been traditionally challenging due to its small size in computed tomography abdominal volumes, high variability of shape and positions among patients, and blurred boundaries due to low contrast between the pancreas and surrounding organs. Many deep learning models for pancreas segmentation have been proposed in the past few years. We present a thorough systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. The literature search was conducted on PubMed, Web of Science, Scopus, and IEEE Xplore on original studies published in peer-reviewed journals from 2013 to 2023. Overall, 130 studies were retrieved. We initially provided an overview of the technical background of the most common network architectures and publicly available datasets. Then, the analysis of the studies combining visual presentation in tabular form and text description was reported. The tables grouped the studies specifying the application, dataset size, design (model architecture, learning strategy, and loss function), results, and main contributions. We first analyzed the studies focusing on parenchyma segmentation using coarse-to-fine approaches, multi-organ segmentation, semi-supervised learning, and unsupervised learning, followed by those studies on generalization to other datasets and those concerning the design of new loss functions. Then, we analyzed the studies on segmentation of tumors, cysts, and inflammation reporting multi-stage methods, semi-supervised learning, generalization to other datasets, and design of new loss functions. Finally, we provided a critical discussion on the subject based on the published evidence underlining current issues that need to be addressed before clinical translation.
Related papers
- Biomedical Image Segmentation: A Systematic Literature Review of Deep Learning Based Object Detection Methods [1.0043008463279772]
Deep learning-based object detection methods are commonly used for biomedical image segmentation.
Existing surveys often lack a standardized approach or focus on broader segmentation techniques.
We critically analyzed these methods, identified the key challenges, and discussed the future directions.
This SLR aims to provide the research community with a quick yet deeper understanding of these segmentation models.
arXiv Detail & Related papers (2024-08-06T18:38:55Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - A Systematic Review of Few-Shot Learning in Medical Imaging [1.049712834719005]
Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis.
This systematic review gives a comprehensive overview of few-shot learning in medical imaging.
arXiv Detail & Related papers (2023-09-20T16:10:53Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Deep Learning for Computational Cytology: A Survey [12.08083533402352]
We introduce various deep learning methods, including fully supervised, weakly supervised, unsupervised, and transfer learning.
Then, we systematically summarize the public datasets, evaluation metrics, versatile cyto image analysis applications including classification, detection, segmentation, and other related tasks.
arXiv Detail & Related papers (2022-02-10T16:22:10Z) - MRI Images, Brain Lesions and Deep Learning [0.0]
We review the published literature on systems and algorithms that allow for classification, identification, and detection of White Matter Hyperintensities (WMHs) of brain MRI images.
There is constant growth in the research and proposal of new models of deep learning to achieve the highest accuracy and reliability of the segmentation of ischemic and demyelinating lesions.
arXiv Detail & Related papers (2021-01-13T14:18:48Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Medical Image Segmentation Using Deep Learning: A Survey [11.204127714820945]
This paper presents a comprehensive survey on medical image segmentation using deep learning techniques.
We classify currently popular literatures according to a multi-level structure from coarse to fine.
For supervised learning approaches, we analyze literatures in three aspects: the selection of backbone networks, the design of network blocks, and the improvement of loss functions.
arXiv Detail & Related papers (2020-09-28T08:05:02Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.