Data-driven Multistage Distributionally Robust Linear Optimization with Nested Distance
- URL: http://arxiv.org/abs/2407.16346v1
- Date: Tue, 23 Jul 2024 09:49:22 GMT
- Title: Data-driven Multistage Distributionally Robust Linear Optimization with Nested Distance
- Authors: Rui Gao, Rohit Arora, Yizhe Huang,
- Abstract summary: We find an optimal robust policy that is time-consistent and well-defined on sample paths.
We identify tractable cases when the value functions can be computed efficiently using convex optimization techniques.
- Score: 11.651972987789655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study multistage distributionally robust linear optimization, where the uncertainty set is defined as a ball of distribution centered at a scenario tree using the nested distance. The resulting minimax problem is notoriously difficult to solve due to its inherent non-convexity. In this paper, we demonstrate that, under mild conditions, the robust risk evaluation of a given policy can be expressed in an equivalent recursive form. Furthermore, assuming stagewise independence, we derive equivalent dynamic programming reformulations to find an optimal robust policy that is time-consistent and well-defined on unseen sample paths. Our reformulations reconcile two modeling frameworks: the multistage-static formulation (with nested distance) and the multistage-dynamic formulation (with one-period Wasserstein distance). Moreover, we identify tractable cases when the value functions can be computed efficiently using convex optimization techniques.
Related papers
- Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability [17.771354881467435]
We show that a simple algorithm with a universal and instance-independent step size is sufficient to obtain near-optimal variance and bias terms.
Our proof technique is based on refined error bounds for linear approximation together with the novel stability result for the product of random matrices.
arXiv Detail & Related papers (2023-10-22T12:37:25Z) - Multistage Stochastic Optimization via Kernels [3.7565501074323224]
We develop a non-parametric, data-driven, tractable approach for solving multistage optimization problems.
We show that the proposed method produces decision rules with near-optimal average performance.
arXiv Detail & Related papers (2023-03-11T23:19:32Z) - Inference on Optimal Dynamic Policies via Softmax Approximation [27.396891119011215]
We show that a simple soft-max approximation to the optimal treatment regime can achieve valid inference on the truly optimal regime.
Our work combines techniques from semi-parametric inference and $g$-estimation, together with an appropriate array central limit theorem.
arXiv Detail & Related papers (2023-03-08T07:42:47Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Distributionally robust risk evaluation with a causality constraint and structural information [0.0]
We approximate test functions by neural networks and prove the sample complexity with Rademacher complexity.
Our framework outperforms the classic counterparts in the distributionally robust portfolio selection problem.
arXiv Detail & Related papers (2022-03-20T14:48:37Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Adaptive Sequential SAA for Solving Two-stage Stochastic Linear Programs [1.6181085766811525]
We present adaptive sequential SAA (sample average approximation) algorithms to solve large-scale two-stage linear programs.
The proposed algorithm can be stopped in finite-time to return a solution endowed with a probabilistic guarantee on quality.
arXiv Detail & Related papers (2020-12-07T14:58:16Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
We show that the problem of robust mean estimation in the presence of a constant adversarial fraction can be solved by gradient descent.
Our work establishes an intriguing connection between the near non-lemma estimation and robust statistics.
arXiv Detail & Related papers (2020-05-04T10:48:04Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
We address the problem of policy evaluation in discounted decision processes, and provide Markov-dependent guarantees on the $ell_infty$error under a generative model.
We establish both and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms.
arXiv Detail & Related papers (2020-03-16T17:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.