FCNR: Fast Compressive Neural Representation of Visualization Images
- URL: http://arxiv.org/abs/2407.16369v2
- Date: Wed, 24 Jul 2024 00:49:00 GMT
- Title: FCNR: Fast Compressive Neural Representation of Visualization Images
- Authors: Yunfei Lu, Pengfei Gu, Chaoli Wang,
- Abstract summary: We present FCNR, a fast compressive neural representation for tens of thousands of visualization images.
Built on the recent advances in stereo image compression, FCNR assimilates stereo context modules and joint context transfer modules to compress image pairs.
- Score: 6.648837287947374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present FCNR, a fast compressive neural representation for tens of thousands of visualization images under varying viewpoints and timesteps. The existing NeRVI solution, albeit enjoying a high compression ratio, incurs slow speeds in encoding and decoding. Built on the recent advances in stereo image compression, FCNR assimilates stereo context modules and joint context transfer modules to compress image pairs. Our solution significantly improves encoding and decoding speed while maintaining high reconstruction quality and satisfying compression ratio. To demonstrate its effectiveness, we compare FCNR with state-of-the-art neural compression methods, including E-NeRV, HNeRV, NeRVI, and ECSIC. The source code can be found at https://github.com/YunfeiLu0112/FCNR.
Related papers
- UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - NERV++: An Enhanced Implicit Neural Video Representation [11.25130799452367]
We introduce neural representations for videos NeRV++, an enhanced implicit neural video representation.
NeRV++ is more straightforward yet effective enhancement over the original NeRV decoder architecture.
We evaluate our method on UVG, MCL JVC, and Bunny datasets, achieving competitive results for video compression with INRs.
arXiv Detail & Related papers (2024-02-28T13:00:32Z) - HiNeRV: Video Compression with Hierarchical Encoding-based Neural
Representation [14.088444622391501]
Implicit Representations (INRs) have previously been used to represent and compress image and video content.
Existing INR-based methods have failed to deliver rate quality performance comparable with the state of the art in video compression.
We propose HiNeRV, an INR that combines light weight layers with hierarchical positional encodings.
arXiv Detail & Related papers (2023-06-16T12:59:52Z) - HNeRV: A Hybrid Neural Representation for Videos [56.492309149698606]
Implicit neural representations store videos as neural networks.
We propose a Hybrid Neural Representation for Videos (HNeRV)
With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks.
arXiv Detail & Related papers (2023-04-05T17:55:04Z) - CNeRV: Content-adaptive Neural Representation for Visual Data [54.99373641890767]
We propose Neural Visual Representation with Content-adaptive Embedding (CNeRV), which combines the generalizability of autoencoders with the simplicity and compactness of implicit representation.
We match the performance of NeRV, a state-of-the-art implicit neural representation, on the reconstruction task for frames seen during training while far surpassing for frames that are skipped during training (unseen images)
With the same latent code length and similar model size, CNeRV outperforms autoencoders on reconstruction of both seen and unseen images.
arXiv Detail & Related papers (2022-11-18T18:35:43Z) - SINCO: A Novel structural regularizer for image compression using
implicit neural representations [10.251120382395332]
Implicit neural representations (INR) have been recently proposed as deep learning (DL) based solutions for image compression.
We present structural regularization for INR compression (SINCO) as a novel INR method for image compression.
arXiv Detail & Related papers (2022-10-26T18:35:54Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.