Bayesian Autoregressive Online Change-Point Detection with Time-Varying Parameters
- URL: http://arxiv.org/abs/2407.16376v1
- Date: Tue, 23 Jul 2024 10:57:13 GMT
- Title: Bayesian Autoregressive Online Change-Point Detection with Time-Varying Parameters
- Authors: Ioanna-Yvonni Tsaknaki, Fabrizio Lillo, Piero Mazzarisi,
- Abstract summary: Change points in real-world systems mark significant regime shifts in system dynamics.
We propose a new method for online change point detection in the mean of a univariate time series.
By modeling temporal dependencies and time-varying parameters, the proposed approach enhances both the estimate accuracy and the forecasting power.
- Score: 0.8192907805418583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Change points in real-world systems mark significant regime shifts in system dynamics, possibly triggered by exogenous or endogenous factors. These points define regimes for the time evolution of the system and are crucial for understanding transitions in financial, economic, social, environmental, and technological contexts. Building upon the Bayesian approach introduced in \cite{c:07}, we devise a new method for online change point detection in the mean of a univariate time series, which is well suited for real-time applications and is able to handle the general temporal patterns displayed by data in many empirical contexts. We first describe time series as an autoregressive process of an arbitrary order. Second, the variance and correlation of the data are allowed to vary within each regime driven by a scoring rule that updates the value of the parameters for a better fit of the observations. Finally, a change point is detected in a probabilistic framework via the posterior distribution of the current regime length. By modeling temporal dependencies and time-varying parameters, the proposed approach enhances both the estimate accuracy and the forecasting power. Empirical validations using various datasets demonstrate the method's effectiveness in capturing memory and dynamic patterns, offering deeper insights into the non-stationary dynamics of real-world systems.
Related papers
- Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control [5.293458740536858]
We propose a novel change-point detection method based on online Dynamic Mode Decomposition with control (ODMDwC)
Our results demonstrate that this method yields intuitive and improved detection results compared to the Singular-Value-Decomposition-based method.
arXiv Detail & Related papers (2024-07-08T14:18:33Z) - Revisiting Dynamic Evaluation: Online Adaptation for Large Language
Models [88.47454470043552]
We consider the problem of online fine tuning the parameters of a language model at test time, also known as dynamic evaluation.
Online adaptation turns parameters into temporally changing states and provides a form of context-length extension with memory in weights.
arXiv Detail & Related papers (2024-03-03T14:03:48Z) - TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables [75.83318701911274]
TimeXer ingests external information to enhance the forecasting of endogenous variables.
TimeXer achieves consistent state-of-the-art performance on twelve real-world forecasting benchmarks.
arXiv Detail & Related papers (2024-02-29T11:54:35Z) - Machine-learning parameter tracking with partial state observation [0.0]
Complex and nonlinear dynamical systems often involve parameters that change with time, accurate tracking of which is essential to tasks such as state estimation, prediction, and control.
We develop a model-free and fully data-driven framework to accurately track time-varying parameters from partial state observation in real time.
Low- and high-dimensional, Markovian and non-Markovian nonlinear dynamical systems are used to demonstrate the power of the machine-learning based parameter-tracking framework.
arXiv Detail & Related papers (2023-11-15T17:39:25Z) - An information field theory approach to Bayesian state and parameter
estimation in dynamical systems [0.0]
This paper develops a scalable Bayesian approach to state and parameter estimation suitable for continuous-time, deterministic dynamical systems.
We construct a physics-informed prior probability measure on the function space of system responses so that functions that satisfy the physics are more likely.
arXiv Detail & Related papers (2023-06-03T16:36:43Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
We propose a flexible model that is capable of identifying both state- and time-dependent switching dynamics.
State-dependent switching is enabled by a recurrent state-to-switch connection.
An explicit duration count variable is used to improve the time-dependent switching behavior.
arXiv Detail & Related papers (2021-10-26T17:35:21Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition [7.9603223299524535]
This paper revisits conventional sequential modeling approaches, aiming to address the problem of capturing time-varying temporal dependency patterns.
We propose a different formulation of HMMs, whereby the dependence on past frames is dynamically inferred from the data.
We derive a tractable inference algorithm based on the forward-backward algorithm.
arXiv Detail & Related papers (2020-02-13T23:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.