論文の概要: Enhancing LLM's Cognition via Structurization
- arxiv url: http://arxiv.org/abs/2407.16434v1
- Date: Tue, 23 Jul 2024 12:33:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 17:16:18.461235
- Title: Enhancing LLM's Cognition via Structurization
- Title(参考訳): 構造化によるLCM認知の強化
- Authors: Kai Liu, Zhihang Fu, Chao Chen, Wei Zhang, Rongxin Jiang, Fan Zhou, Yaowu Chen, Yue Wu, Jieping Ye,
- Abstract要約: 大規模言語モデル(LLM)は因果的かつシーケンシャルな視点で入力コンテキストを処理する。
本稿では,コンテキスト構造化という新しい概念を提案する。
具体的には、平易で秩序のない文脈文を、適切に順序付けされ階層的に構造化された要素に変換する。
- 参考スコア(独自算出の注目度): 41.13997892843677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When reading long-form text, human cognition is complex and structurized. While large language models (LLMs) process input contexts through a causal and sequential perspective, this approach can potentially limit their ability to handle intricate and complex inputs effectively. To enhance LLM's cognition capability, this paper presents a novel concept of context structurization. Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements. By doing so, LLMs can better grasp intricate and extended contexts through precise attention and information-seeking along the organized structures. Extensive evaluations are conducted across various model architectures and sizes (including several 7B- to 72B-size auto-regressive LLMs as well as BERT-like masking models) on a diverse set of NLP tasks (e.g., context-based question-answering, exhaustive hallucination evaluation, and passage-level dense retrieval). Empirical results show consistent and significant performance gains afforded by a single-round structurization. In particular, we boost a 72B-parameter open-source model to achieve comparable performance against GPT-3.5-Turbo as the hallucination evaluator. Besides, we show the feasibility of distilling advanced LLMs' language processing abilities to a smaller yet effective StruXGPT-7B to execute structurization, addressing the practicality of our approach. Code will be made public soon.
- Abstract(参考訳): 長文を読むとき、人間の認知は複雑で構造化されている。
大きな言語モデル(LLM)は因果的かつシーケンシャルな視点で入力コンテキストを処理するが、このアプローチは複雑な入力を効果的に扱う能力を制限する可能性がある。
本稿では,LLMの認知能力を高めるために,コンテキスト構造化という新しい概念を提案する。
具体的には、平易で秩序のない文脈文を、適切に順序付けされ階層的に構造化された要素に変換する。
これにより、LLMは、組織構造に沿って正確な注意と情報探索を通じて、複雑で拡張されたコンテキストをよりよく把握することができる。
様々なNLPタスク(例えば、文脈に基づく質問応答、徹底的な幻覚評価、通過レベルの密集検索)において、様々なモデルアーキテクチャとサイズ(いくつかの7B-から72Bサイズの自動回帰LDMとBERT様マスキングモデルを含む)で広範囲にわたる評価を行う。
実験結果から, 単ラウンド構造化による一貫した, 顕著な性能向上が得られた。
特に,72Bパラメータのオープンソースモデルを改良し,幻覚評価器としてGPT-3.5-Turboに匹敵する性能を実現する。
さらに,LLMの言語処理能力を,より小型で効果的なStruXGPT-7Bに蒸留し,構造化の実現可能性を示し,本手法の実用性に対処する。
コードはまもなく公開されます。
関連論文リスト
- Struct-X: Enhancing Large Language Models Reasoning with Structured Data [38.558614152006975]
構造Xは5つの重要なフェーズを通して動作する:read-model-fill-reflect-reason'
構造化データをグラフ埋め込みを用いて位相空間にエンコードする。
行方不明のエンティティ情報を知識検索モジュールで埋める。
最後のフェーズでは、選択したトークンでトポロジネットワークを構築する。
論文 参考訳(メタデータ) (2024-07-17T13:06:25Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - A Simple but Effective Approach to Improve Structured Language Model
Output for Information Extraction [11.165093163378152]
大規模言語モデル(LLM)は、命令に従って非構造化自然言語を生成する際、印象的な能力を示した。
本稿では,その構造的テキスト生成能力を高めるために,効率的なG&O手法を提案する。
論文 参考訳(メタデータ) (2024-02-20T20:42:02Z) - Tree-Based Hard Attention with Self-Motivation for Large Language Models [7.2677650379517775]
大きな言語モデル(LLM)は、平易なテキストの理解と生成に優れる。
階層的なテキスト構造を扱うように特別に調整されていない。
本稿では,大規模言語モデルのための自己モチベーションを用いた木ベースハードアテンションという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-14T00:40:51Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Can Large Language Models Understand Real-World Complex Instructions? [54.86632921036983]
大型言語モデル(LLM)は人間の指示を理解することができるが、複雑な命令には耐えられない。
既存のベンチマークでは、LLMが複雑な命令を理解する能力を評価するには不十分である。
複雑な命令を体系的に追従するLSMの能力を評価するためのベンチマークであるCellOを提案する。
論文 参考訳(メタデータ) (2023-09-17T04:18:39Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
大規模言語モデル(LLM)は、幅広い自然言語理解と生成タスクにおいて顕著な進歩を遂げている。
本稿では,様々な種類のNLUタスクに対する総合的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-24T06:44:32Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
我々は,構造化データに基づく質問応答タスクの解法として,emphIterative Reading-then-Reasoning(IRR)アプローチを開発した。
提案手法はChatGPTの性能を大幅に向上させ,全データの教師付きベースラインに対して同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-16T17:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。