論文の概要: Improving the Computational Efficiency of Adaptive Audits of IRV Elections
- arxiv url: http://arxiv.org/abs/2407.16465v1
- Date: Tue, 23 Jul 2024 13:28:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 17:16:18.438291
- Title: Improving the Computational Efficiency of Adaptive Audits of IRV Elections
- Title(参考訳): IRV選挙における適応監査の計算効率の向上
- Authors: Alexander Ek, Michelle Blom, Philip B. Stark, Peter J. Stuckey, Damjan Vukcevic,
- Abstract要約: AWAIREは、任意の数の候補でIRVコンテストを監査できるが、当初の実装では、候補数とともに指数関数的に増加するメモリと計算コストが増大していた。
本稿では,従来の6候補と比較して,55候補のIRVコンテストを実際に実施する3つの方法で,AWAIREのアルゴリズム実装を改善した。
- 参考スコア(独自算出の注目度): 54.427049258408424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AWAIRE is one of two extant methods for conducting risk-limiting audits of instant-runoff voting (IRV) elections. In principle AWAIRE can audit IRV contests with any number of candidates, but the original implementation incurred memory and computation costs that grew superexponentially with the number of candidates. This paper improves the algorithmic implementation of AWAIRE in three ways that make it practical to audit IRV contests with 55 candidates, compared to the previous 6 candidates. First, rather than trying from the start to rule out all candidate elimination orders that produce a different winner, the algorithm starts by considering only the final round, testing statistically whether each candidate could have won that round. For those candidates who cannot be ruled out at that stage, it expands to consider earlier and earlier rounds until either it provides strong evidence that the reported winner really won or a full hand count is conducted, revealing who really won. Second, it tests a richer collection of conditions, some of which can rule out many elimination orders at once. Third, it exploits relationships among those conditions, allowing it to abandon testing those that are unlikely to help. We provide real-world examples with up to 36 candidates and synthetic examples with up to 55 candidates, showing how audit sample size depends on the margins and on the tuning parameters. An open-source Python implementation is publicly available.
- Abstract(参考訳): AWAIREは、即時投票(IRV)選挙のリスク制限監査を行う2つの方法の1つである。
原則として、AWAIREは任意の数の候補でIRVコンテストを監査できるが、当初の実装では、候補数とともに指数関数的に増加するメモリと計算コストが増大していた。
本稿では,従来の6候補と比較して,55候補のIRVコンテストを実際に実施する3つの方法で,AWAIREのアルゴリズム実装を改善した。
まず、まず最初に、異なる勝者を生み出す候補者の排除命令をすべて除外する代わりに、アルゴリズムは最終ラウンドのみを考慮し、各候補者がそのラウンドに勝ったかどうかを統計的にテストすることから始まる。
その段階では除外できない候補者に対しては、報告された勝者が本当に勝ったという強い証拠が提示されるまで、前回および前回のラウンドを検討するように拡大し、誰が本当に勝ったかを明らかにする。
第二に、よりリッチな条件の集合をテストし、そのうちのいくつかは一度に多くの除去順序を除外することができる。
第三に、これらの条件間の関係を利用して、役に立たないようなテストを捨てることができます。
最大36の候補を持つ実世界の実例と、55の候補を持つ合成例を提供し、監査サンプルのサイズがマージンやチューニングパラメータに依存するかを示す。
オープンソースのPython実装が公開されている。
関連論文リスト
- Ahead of the Count: An Algorithm for Probabilistic Prediction of Instant Runoff (IRV) Elections [0.0]
Instant Runoff Voting (IRV) 選挙の結果を予測する新しいアルゴリズムを提案する。
アルゴリズムは、各候補ランキングの投票総数を表す離散確率分布の集合を入力として取る。
IRVラウンドで発生する可能性のあるすべての除去シーケンスを計算し、それぞれに確率を割り当てる。
論文 参考訳(メタデータ) (2024-05-15T00:25:51Z) - Efficient Weighting Schemes for Auditing Instant-Runoff Voting Elections [57.67176250198289]
AWAIREは、適応的に重み付けされたテスト統計量であり、本質的には、テストに有効な仮説のセットを「学習」する。
我々は、より広範囲にスキームと設定を検討し、実践のための効率的な選択を特定し、推奨する。
現在のAWAIRE実装の制限は、少数の候補者に限られている。
論文 参考訳(メタデータ) (2024-02-18T10:13:01Z) - The Decisive Power of Indecision: Low-Variance Risk-Limiting Audits and Election Contestation via Marginal Mark Recording [51.82772358241505]
リスクリミット監査(リスクリミット監査、RLA)は、大規模な選挙の結果を検証する技術である。
我々は、効率を改善し、統計力の進歩を提供する監査の新たなファミリーを定めている。
新しい監査は、複数の可能なマーク解釈を宣言できるように、キャストボイトレコードの標準概念を再考することで実現される。
論文 参考訳(メタデータ) (2024-02-09T16:23:54Z) - Adaptively Weighted Audits of Instant-Runoff Voting Elections: AWAIRE [61.872917066847855]
即時投票(IRV)選挙の監査方法は、リスク制限や、各投票における投票の電子的記録であるキャスト投票記録(CVR)を必要とするものではない。
我々は,CVRが利用できない場合に,適応的に重み付けされたテストスーパーマーチンガルを用いてITV選挙を効率よく監査するRLA手法を開発した。
論文 参考訳(メタデータ) (2023-07-20T15:55:34Z) - Large Language Models are not Fair Evaluators [60.27164804083752]
候補回答の品質ランキングは,文脈の出現順序を変えることで容易にハックできることがわかった。
この操作により、評価結果をスキューし、一方のモデルを他方よりもかなり優れているようにすることができる。
この問題を緩和するための3つのシンプルかつ効果的な戦略を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T07:41:03Z) - Ballot-Polling Audits of Instant-Runoff Voting Elections with a
Dirichlet-Tree Model [23.14629947453497]
即時投票(Instant-runoff voting、IRV)は、世界中のいくつかの国で使用されている。
投票者は選好順に候補者をランク付けすることが必要であり、最初のペーストポストやスコアリングルールのようなシステムよりも複雑なカウントアルゴリズムを使用する。
さらに複雑なシステムであるSTV(Single Transferable vote)は、複数の候補者を選出する必要があるときに使用される。
現在、STVのリスク制限監査(RLA)法は、完全な手動による投票数以外には知られていない。
論文 参考訳(メタデータ) (2022-09-08T15:35:50Z) - Auditing Ranked Voting Elections with Dirichlet-Tree Models: First Steps [23.14629947453497]
ランク付けされた投票システムは世界中の多くの場所で使用されている。
フルハンドカウント以外に、STVのリスク制限監査(RLA)手法は知られていない。
本稿では,高次元パラメータを計算的に効率的に扱える統計モデルDirichlet-treeを用いたランキングシステムの監査手法を提案する。
論文 参考訳(メタデータ) (2022-06-29T13:06:42Z) - Bribery as a Measure of Candidate Success: Complexity Results for
Approval-Based Multiwinner Rules [58.8640284079665]
有権者が承認投票(すなわち、承認した候補者の集合)を投じた場合のマルチウィナー選挙における贈収賄の問題を研究する。
我々は、いくつかの承認ベースのマルチウィナールール(AV、SAV、GAV、RAV、承認ベースのチェンバリン--Courant、およびPAV)を検討します。
一般に、我々の問題は、勝利した委員会の候補者の承認数を増やすための贈収賄行為を制限した場合、より容易になる傾向がある。
論文 参考訳(メタデータ) (2021-04-19T08:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。