論文の概要: Spurious Correlations in Concept Drift: Can Explanatory Interaction Help?
- arxiv url: http://arxiv.org/abs/2407.16515v1
- Date: Tue, 23 Jul 2024 14:30:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 16:55:42.969877
- Title: Spurious Correlations in Concept Drift: Can Explanatory Interaction Help?
- Title(参考訳): 説明的相互作用は役立つか?
- Authors: Cristiana Lalletti, Stefano Teso,
- Abstract要約: 概念ドリフト(CD)検出のための新しい検出器であるebc-exstreamを導入する。
エントロピーベースのフィードバックを活用して、アノテーションのコストを削減する。
人工的に構築されたデータに関する予備実験は、ebc-exstreamの約束を強調している。
- 参考スコア(独自算出の注目度): 10.88079531894407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-running machine learning models face the issue of concept drift (CD), whereby the data distribution changes over time, compromising prediction performance. Updating the model requires detecting drift by monitoring the data and/or the model for unexpected changes. We show that, however, spurious correlations (SCs) can spoil the statistics tracked by detection algorithms. Motivated by this, we introduce ebc-exstream, a novel detector that leverages model explanations to identify potential SCs and human feedback to correct for them. It leverages an entropy-based heuristic to reduce the amount of necessary feedback, cutting annotation costs. Our preliminary experiments on artificially confounded data highlight the promise of ebc-exstream for reducing the impact of SCs on detection.
- Abstract(参考訳): 長時間稼働する機械学習モデルは概念ドリフト(CD)の問題に直面し、データ分布は時間とともに変化し、予測性能が低下する。
モデルの更新には、予期しない変更のためにデータや/またはモデルを監視してドリフトを検出する必要がある。
しかし,スプリアス相関(SC)は検出アルゴリズムによって追跡される統計を損なう可能性がある。
そこで本研究では,モデル説明を利用して潜在的なSCと人間のフィードバックを同定し,その修正を行う新しい検知器であるebc-exstreamを紹介した。
エントロピーベースのヒューリスティックを利用して、必要なフィードバックの量を削減し、アノテーションのコストを削減します。
人工的に構築したデータに対する予備実験では,検出に対するSCの影響を低減するためのebc-exstreamの可能性を強調した。
関連論文リスト
- DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
機械学習におけるドリフト(drift)とは、モデルが動作しているデータやコンテキストの統計的性質が時間とともに変化し、性能が低下する現象を指す。
提案手法では, 目標分布として生産データのサンプルを符号化し, モデルトレーニングデータを基準分布として符号化する。
また,ドリフトの根本原因である生産データのサブセットも同定する。
これらの高ドリフトサンプルを用いて再トレーニングしたモデルでは、オンライン顧客エクスペリエンスの品質指標のパフォーマンスが改善された。
論文 参考訳(メタデータ) (2023-09-07T16:45:42Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Extracting or Guessing? Improving Faithfulness of Event Temporal
Relation Extraction [87.04153383938969]
本研究では,TempRel抽出モデルの忠実度を2つの観点から改善する。
第1の視点は、文脈記述に基づいて真に抽出することである。
第2の視点は、適切な不確実性評価を提供することである。
論文 参考訳(メタデータ) (2022-10-10T19:53:13Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
本稿では,観測画像データから因果構造を推定する作業について考察する。
Diff-SCMは,近年の発電エネルギーモデルの発展を基盤とした構造因果モデルである。
Diff-SCMはMNISTデータに基づくベースラインよりも現実的で最小限のデファクトアルを生成しており、ImageNetデータにも適用可能である。
論文 参考訳(メタデータ) (2022-02-21T12:23:01Z) - TFDPM: Attack detection for cyber-physical systems with diffusion
probabilistic models [10.389972581904999]
CPSにおける攻撃検出タスクの一般的なフレームワークであるTFDPMを提案する。
履歴データから時間パターンと特徴パターンを同時に抽出する。
ノイズスケジューリングネットワークは、検出速度を3倍に向上させる。
論文 参考訳(メタデータ) (2021-12-20T13:13:29Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Handling Missing Observations with an RNN-based Prediction-Update Cycle [10.478312054103975]
追跡などのタスクでは、時系列データは必然的に観察を欠いている。
本稿では,動作状態推定のための全時間フィルタリングサイクルを提供するRNNベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-03-22T11:55:10Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。