論文の概要: Architectural Tactics to Improve the Environmental Sustainability of Microservices: A Rapid Review
- arxiv url: http://arxiv.org/abs/2407.16706v1
- Date: Fri, 19 Jul 2024 22:44:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 17:52:45.649283
- Title: Architectural Tactics to Improve the Environmental Sustainability of Microservices: A Rapid Review
- Title(参考訳): マイクロサービスの環境サステナビリティを改善するためのアーキテクチャ戦略: 迅速なレビュー
- Authors: Xingwen Xiao,
- Abstract要約: この素早いレビューは、22のピアレビュー研究を集め、システムの環境持続可能性を改善するためのアーキテクチャ戦略を合成する。
動作可能な方法で提示され、持続可能性の側面と状況に応じて分類される6つの戦術をリストアップする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Microservices are a popular architectural style adopted by the industry when it comes to deploying software that requires scalability, maintainability, and agile development. There is an increasing demand for improving the sustainability of microservice systems in the industry. This rapid review gathers 22 peer-reviewed studies and synthesizes architectural tactics that improve the environmental sustainability of microservices from them. We list 6 tactics that are presented in an actionable way and categorized according to their sustainability aspects and context. The sustainability aspects include energy efficiency, carbon efficiency, and resource efficiency, among which resource efficiency is the most researched one while energy efficiency and carbon efficiency are still in the early stage of study. The context categorization, including serverless platforms, decentralized networks, etc., helps to identify the tactics that we can use in a specific setting. Additionally, we present how the evidence of optimization after adopting these tactics is presented, like the measurement unit and statistical methods, and how experiments are generally set up so that this review is both instructive for our future study and our industrial practitioners' interest. We further study the insufficiencies of the current study and hope to provide insight for other researchers and the industry.
- Abstract(参考訳): マイクロサービスは、スケーラビリティ、保守性、アジャイル開発を必要とするソフトウェアをデプロイすることに関して、業界で採用されている一般的なアーキテクチャスタイルです。
業界におけるマイクロサービスシステムの持続可能性向上に対する需要が高まっている。
この素早いレビューは、22のピアレビュー研究を集め、マイクロサービスの環境持続可能性を改善するためのアーキテクチャ戦略を合成する。
動作可能な方法で提示され、持続可能性の側面と状況に応じて分類される6つの戦術をリストアップする。
持続可能性の側面には、エネルギー効率、炭素効率、資源効率が含まれており、エネルギー効率と炭素効率は研究の初期段階にある。
サーバレスプラットフォームや分散ネットワークなどを含むコンテキスト分類は、特定の環境で使用可能な戦術の特定に役立ちます。
さらに,これらの手法を採用した後の最適化の証拠が,測定単位や統計手法のようにどのように提示されるか,また,このレビューが今後の研究と産業実践者の関心に反映されるように,実験が一般的に設定されるかを示す。
さらに,本研究の不十分さについて検討し,他の研究者や業界に洞察を提供することを期待する。
関連論文リスト
- EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems [82.76483989905961]
現在のSRS(Sequential Recommender Systems)は、計算とリソースの非効率に悩まされている。
我々は、効率的な長期シーケンスレコメンダシステム(EASRec)のための弾性アーキテクチャー探索を開発する。
EASRecは、入力データバッチから履歴情報を活用するデータ認識ゲートを導入し、レコメンデーションネットワークの性能を改善する。
論文 参考訳(メタデータ) (2024-02-01T07:22:52Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Efficiency Pentathlon: A Standardized Arena for Efficiency Evaluation [82.85015548989223]
Pentathlonは、モデル効率の総合的で現実的な評価のためのベンチマークである。
Pentathlonは、モデルライフサイクルにおける計算の大部分を占める推論に焦点を当てている。
レイテンシ、スループット、メモリオーバーヘッド、エネルギー消費など、さまざまな効率面をターゲットにしたメトリクスが組み込まれている。
論文 参考訳(メタデータ) (2023-07-19T01:05:33Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Does Microservices Adoption Impact the Development Velocity? A Cohort
Study. A Registered Report [4.866714740906538]
本研究の目的は,開発速度に及ぼす効果を検討することである。
この調査は、当初から採用されていたGitHubプロジェクトと、モノリシックアーキテクチャを使用した同様のプロジェクトを比較している。
論文 参考訳(メタデータ) (2023-06-03T07:27:01Z) - Building Energy Efficiency through Advanced Regression Models and Metaheuristic Techniques for Sustainable Management [3.6811136816751513]
この研究は、建設インフラからの広範な生データを活用して、エネルギー消費パターンを明らかにする。
ラッソ回帰, 決定木, ランダムフォレストモデルを用いて, 建物のエネルギー効率とコスト削減に影響を与える要因について検討した。
メタヒューリスティックな手法を用いて決定木アルゴリズムを改良し,予測精度を向上する。
論文 参考訳(メタデータ) (2023-05-15T01:21:42Z) - Machine Learning Approaches in Agile Manufacturing with Recycled
Materials for Sustainability [2.132096006921048]
本研究は, リサイクル・再生材料を用いたアジャイル製造における意思決定支援を通じて, 材料科学における環境持続可能性について論じる。
本稿では,機械学習モデルを用いて予測分析を行い,製造における意思決定支援を支援することによって,AIにおけるデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2023-03-15T00:39:31Z) - An Energy and Carbon Footprint Analysis of Distributed and Federated
Learning [42.37180749113699]
古典的で中央集権的な人工知能(AI)手法では、生産者(センサー、マシン)からエネルギー空腹のデータセンターへデータを移動する必要がある。
このような高エネルギーコストを緩和する新たな代替手段は、デバイス間で学習タスクを効率的に分散またはフェデレートすることを提案している。
本稿では,分散学習におけるエネルギーおよび炭素フットプリントの分析のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-06-21T13:28:49Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。