論文の概要: A Survey of Sustainability in Large Language Models: Applications, Economics, and Challenges
- arxiv url: http://arxiv.org/abs/2412.04782v2
- Date: Sat, 18 Jan 2025 15:46:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:15:35.754960
- Title: A Survey of Sustainability in Large Language Models: Applications, Economics, and Challenges
- Title(参考訳): 大規模言語モデルにおける持続可能性に関する調査--応用, 経済, 課題
- Authors: Aditi Singh, Nirmal Prakashbhai Patel, Abul Ehtesham, Saket Kumar, Tala Talaei Khoei,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語理解、生成、推論の高度な機能を提供することによって、多くのドメインを変換している。
研究、医療、クリエイティビティ・メディアといった業界にまたがる、画期的な応用にもかかわらず、彼らの急速な採用は持続可能性に関する重要な懸念を提起する。
本研究では, LLMの環境, 経済, 計算的課題について検討し, データセンターのエネルギー消費, 炭素排出量, 資源利用に着目した。
- 参考スコア(独自算出の注目度): 0.7889270818022226
- License:
- Abstract: Large Language Models (LLMs) have transformed numerous domains by providing advanced capabilities in natural language understanding, generation, and reasoning. Despite their groundbreaking applications across industries such as research, healthcare, and creative media, their rapid adoption raises critical concerns regarding sustainability. This survey paper comprehensively examines the environmental, economic, and computational challenges associated with LLMs, focusing on energy consumption, carbon emissions, and resource utilization in data centers. By synthesizing insights from existing literature, this work explores strategies such as resource-efficient training, sustainable deployment practices, and lifecycle assessments to mitigate the environmental impacts of LLMs. Key areas of emphasis include energy optimization, renewable energy integration, and balancing performance with sustainability. The findings aim to guide researchers, practitioners, and policymakers in developing actionable strategies for sustainable AI systems, fostering a responsible and environmentally conscious future for artificial intelligence.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語理解、生成、推論の高度な機能を提供することによって、多くのドメインを変換している。
研究、医療、クリエイティビティ・メディアといった業界にまたがる、画期的な応用にもかかわらず、彼らの急速な採用は持続可能性に関する重要な懸念を提起する。
本研究では, LLMの環境, 経済, 計算的課題を総合的に検討し, データセンターのエネルギー消費, 炭素排出量, 資源利用に着目した。
既存の文献から洞察を合成することにより, LLMの環境影響を軽減するため, 資源効率のトレーニング, 持続可能な展開プラクティス, ライフサイクルアセスメントなどの戦略を探求する。
主な重点分野は、エネルギー最適化、再生可能エネルギー統合、性能と持続可能性のバランスである。
この研究の目的は、研究者、実践者、政策立案者が持続可能なAIシステムのための実行可能な戦略を開発し、人工知能の責任と環境に配慮した未来を育むことである。
関連論文リスト
- Architectural Tactics to Improve the Environmental Sustainability of Microservices: A Rapid Review [0.0]
この素早いレビューは、22のピアレビュー研究を集め、システムの環境持続可能性を改善するためのアーキテクチャ戦略を合成する。
動作可能な方法で提示され、持続可能性の側面と状況に応じて分類される6つの戦術をリストアップする。
論文 参考訳(メタデータ) (2024-07-19T22:44:58Z) - The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
ファンデーションモデル開発は、急速に成長するコントリビュータ、科学者、アプリケーションを引き付けている。
責任ある開発プラクティスを形成するために、我々はFoundation Model Development Cheatsheetを紹介します。
論文 参考訳(メタデータ) (2024-06-24T15:55:49Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - Recommendations for public action towards sustainable generative AI
systems [0.0]
本稿では,生成AIの環境フットプリントの構成要素について述べる。
これは、大規模な言語モデルのトレーニングに関連する大量のCO2排出量と水消費を強調します。
また, 環境負荷に影響を及ぼすモデルの特徴と要因についても検討した。
論文 参考訳(メタデータ) (2024-01-04T08:55:53Z) - Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models [33.50873478562128]
LLM(Large Language Models)は、計算、メモリ、エネルギー、金融資源の高消費に課題をもたらす。
本調査は, LLMの資源効率向上を目的とした多種多様な手法を概観することにより, これらの課題を体系的に解決することを目的としている。
論文 参考訳(メタデータ) (2024-01-01T01:12:42Z) - Opportunities and Challenges of Applying Large Language Models in
Building Energy Efficiency and Decarbonization Studies: An Exploratory
Overview [3.580636644178055]
本稿では,エネルギー効率と脱炭研究におけるLarge Language Models(LLMs)の適用,意義,可能性について検討する。
LLMの有望な可能性にもかかわらず、複雑で高価な計算、データのプライバシ、セキュリティと著作権、微調整されたLLMの複雑さ、自己整合性といった課題について議論する。
論文 参考訳(メタデータ) (2023-12-18T20:58:58Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - GreenDB -- A Dataset and Benchmark for Extraction of Sustainability
Information of Consumer Goods [58.31888171187044]
毎週、ヨーロッパのオンラインショップから商品を収集するデータベースであるGreenDBを提示する。
製品サステナビリティのプロキシとして、専門家が評価するサステナビリティラベルに依存している。
本稿では,データを用いてトレーニングしたMLモデルを用いて,製品のサステナビリティラベルを確実に予測できることを示す。
論文 参考訳(メタデータ) (2022-07-21T19:59:42Z) - Artificial intelligence for Sustainable Energy: A Contextual Topic
Modeling and Content Analysis [0.0]
LDA、BERT、Clusteringを組み合わせた新しいコンテキストトピックモデリングを提供する。
次に、これらの計算分析と関連する学術出版物のコンテンツ分析を組み合わせて、持続可能なAIに関する科学研究における主要な学術的話題、サブテーマ、および横断テーマを特定した。
我々の研究は、持続可能な建物、都市水管理のためのAIベースのDSS、気候人工知能、農業4、AIとIoTの融合、再生可能技術の評価を含む8つの主要なトピックを特定した。
論文 参考訳(メタデータ) (2021-10-02T15:51:51Z) - Leveraging traditional ecological knowledge in ecosystem restoration
projects utilizing machine learning [77.34726150561087]
生態系修復プロジェクトの段階におけるコミュニティの関与は、コミュニティの健康改善に寄与する可能性がある。
適応的でスケーラブルなプラクティスは、エコシステム的なML修復プロジェクトのすべての段階において、学際的なコラボレーションを動機付けることができることを示唆している。
論文 参考訳(メタデータ) (2020-06-22T16:17:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。