論文の概要: TAMIGO: Empowering Teaching Assistants using LLM-assisted viva and code assessment in an Advanced Computing Class
- arxiv url: http://arxiv.org/abs/2407.16805v1
- Date: Tue, 23 Jul 2024 19:12:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 15:32:29.568431
- Title: TAMIGO: Empowering Teaching Assistants using LLM-assisted viva and code assessment in an Advanced Computing Class
- Title(参考訳): TAMIGO:先進コンピューティング授業におけるLLM支援ビバとコードアセスメントを用いた指導アシスタントの活用
- Authors: Anishka IIITD, Diksha Sethi, Nipun Gupta, Shikhar Sharma, Srishti Jain, Ujjwal Singhal, Dhruv Kumar,
- Abstract要約: 本稿では,ビバとコードアセスメントを用いた指導支援システムにおける大規模言語モデルの適用について検討する。
我々は,プログラミング課題を評価するためのLLMベースのTAMシステムであるTAMIGOを開発した。
我々は, LLM生成ビバ質問の品質, モデル回答, ビバ回答に対するフィードバック, 学生コード提出に対するフィードバックを評価した。
- 参考スコア(独自算出の注目度): 3.3567738223900645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have significantly transformed the educational landscape, offering new tools for students, instructors, and teaching assistants. This paper investigates the application of LLMs in assisting teaching assistants (TAs) with viva and code assessments in an advanced computing class on distributed systems in an Indian University. We develop TAMIGO, an LLM-based system for TAs to evaluate programming assignments. For viva assessment, the TAs generated questions using TAMIGO and circulated these questions to the students for answering. The TAs then used TAMIGO to generate feedback on student answers. For code assessment, the TAs selected specific code blocks from student code submissions and fed it to TAMIGO to generate feedback for these code blocks. The TAMIGO-generated feedback for student answers and code blocks was used by the TAs for further evaluation. We evaluate the quality of LLM-generated viva questions, model answers, feedback on viva answers, and feedback on student code submissions. Our results indicate that LLMs are highly effective at generating viva questions when provided with sufficient context and background information. However, the results for LLM-generated feedback on viva answers were mixed; instances of hallucination occasionally reduced the accuracy of feedback. Despite this, the feedback was consistent, constructive, comprehensive, balanced, and did not overwhelm the TAs. Similarly, for code submissions, the LLM-generated feedback was constructive, comprehensive and balanced, though there was room for improvement in aligning the feedback with the instructor-provided rubric for code evaluation. Our findings contribute to understanding the benefits and limitations of integrating LLMs into educational settings.
- Abstract(参考訳): 大規模言語モデル (LLM) は、学生、インストラクター、および指導助手に新しいツールを提供することによって、教育の景観を大きく変えた。
本稿では,インド大学における分散システムの先進的な計算クラスにおいて,学習支援システム(TA)のビバとコードアセスメントを補助するLLMの適用について検討する。
我々は,プログラミング課題を評価するためのLLMベースのTAMシステムであるTAMIGOを開発した。
ビバ評価のために,TAはTAMIGOを用いて質問を生成し,学生に回答を求めた。
その後、TAはTAMIGOを使って学生の回答をフィードバックした。
コードアセスメントでは、TAは学生のコードから特定のコードブロックを選択し、それをTAMIGOに送ってこれらのコードブロックに対するフィードバックを生成する。
TAMIGOが生成した学生の回答とコードブロックに対するフィードバックは、TAがさらなる評価のために使用した。
我々は, LLM生成ビバ質問の品質, モデル回答, ビバ回答に対するフィードバック, 学生コード提出に対するフィードバックを評価した。
以上の結果から,LLMは十分なコンテキストと背景情報を提供すると,ビバ問題を生成するのに極めて有効であることが示唆された。
しかし, LLMによる視覚応答に対するフィードバックの結果は混在しており, 幻覚の場合, フィードバックの精度が低下することがある。
それにもかかわらず、フィードバックは一貫性があり、建設的で、包括的で、バランスが取れており、TAを圧倒することはなかった。
同様に、コード提出に関しても、LLMの生成したフィードバックは構成的で包括的でバランスが取れていたが、インストラクターが提供するルーリックとフィードバックの整合性を改善する余地があった。
本研究は,LLMを教育環境に組み込むことのメリットと限界の理解に寄与する。
関連論文リスト
- CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
データサイエンスタスクにコードインタプリタを利用するLLMの能力を総合的に評価する,CIBenchという対話型評価フレームワークを提案する。
評価データセットは,LLM-人的協調手法を用いて構築され,連続的かつ対話的なIPythonセッションを活用することによって,実際のワークフローをシミュレートする。
コードインタプリタの利用において, CIBench 上で 24 個の LLM の能力を解析し, 将来の LLM に対する貴重な洞察を提供するため, 広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2024-07-15T07:43:55Z) - Large Language Model as an Assignment Evaluator: Insights, Feedback, and Challenges in a 1000+ Student Course [49.296957552006226]
大規模言語モデル(LLM)を自動評価に用いることは,NLP研究において重要な評価手法となっている。
本報告では,1028人の大学生を対象に,GPT-4を自動課題評価装置として利用する方法について述べる。
論文 参考訳(メタデータ) (2024-07-07T00:17:24Z) - Generating Feedback-Ladders for Logical Errors in Programming using Large Language Models [2.1485350418225244]
大規模言語モデル(LLM)に基づく手法は,プログラムの代入に対するフィードバック生成において大きな可能性を秘めている。
本稿では、LLMを用いて「フィードバック・ラダー」、すなわち、同じ問題とサブミッションのペアに対する複数のレベルのフィードバックを生成する。
本研究では, 学生, 教育者, 研究者によるユーザスタディにより, 生成したフィードバックラダーの品質を評価する。
論文 参考訳(メタデータ) (2024-05-01T03:52:39Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - Why and When LLM-Based Assistants Can Go Wrong: Investigating the
Effectiveness of Prompt-Based Interactions for Software Help-Seeking [5.755004576310333]
大規模言語モデル(LLM)アシスタントは、ユーザーがソフトウェアをナビゲートするための検索方法の潜在的な代替手段として登場した。
LLMアシスタントは、ドメイン固有のテキスト、ソフトウェアマニュアル、コードリポジトリからの膨大なトレーニングデータを使用して、人間のようなインタラクションを模倣する。
論文 参考訳(メタデータ) (2024-02-12T19:49:58Z) - Automated Assessment of Students' Code Comprehension using LLMs [0.3293989832773954]
大規模言語モデル(LLM)とエンコーダベースのセマンティックテキスト類似(STS)モデルを評価する。
この結果から,LLMはプログラミング領域における生徒の短解評価において,微調整エンコーダモデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-19T20:39:12Z) - Students' Perceptions and Preferences of Generative Artificial
Intelligence Feedback for Programming [15.372316943507506]
そこで我々はChatGPT APIを用いて,導入型コンピュータサイエンスクラスにおける4つの実験室割り当てのための自動フィードバックを生成した。
学生は、フィードバックは、Shuteが確立した形式的なフィードバックガイドラインとよく一致していると感じた。
学生は通常、十分なコード例で特定の修正フィードバックを期待していたが、フィードバックのトーンについて意見が分かれていた。
論文 参考訳(メタデータ) (2023-12-17T22:26:53Z) - Tuna: Instruction Tuning using Feedback from Large Language Models [74.04950416204551]
本稿では,新しいテキスト確率的ランキングとテキストコンテクスチュアルランキングを用いた命令調整型大規模言語モデルの微調整を提案する。
確率的ランク付けにより、教師のLCMから高品質で低品質なレスポンスの相対的なランク付けを継承することができる。
一方、文脈的ランキングを学習することで、より強いLLMの文脈的理解能力を用いて、モデルが独自の応答分布を洗練できる。
論文 参考訳(メタデータ) (2023-10-20T09:55:06Z) - Calculating Originality of LLM Assisted Source Code [0.0]
本稿では,学生がソースコードを書く際の本来の取り組み(およびLLMの貢献)を決定するニューラルネットワークベースのツールを提案する。
我々のツールは、コルモゴロフ複雑性のような最小記述長測度によって動機付けられている。
論文 参考訳(メタデータ) (2023-07-10T11:30:46Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。