論文の概要: A Nested Model for AI Design and Validation
- arxiv url: http://arxiv.org/abs/2407.16888v2
- Date: Thu, 1 Aug 2024 11:46:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-02 13:45:14.991997
- Title: A Nested Model for AI Design and Validation
- Title(参考訳): AI設計と検証のためのネストモデル
- Authors: Akshat Dubey, Zewen Yang, Georges Hattab,
- Abstract要約: 新しい規制の必要性にもかかわらず、規制科学とAIの間にはミスマッチがある。
AI設計と検証のための5層ネストモデルが、これらの問題に対処することを目指している。
- 参考スコア(独自算出の注目度): 0.5120567378386615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing AI field faces trust, transparency, fairness, and discrimination challenges. Despite the need for new regulations, there is a mismatch between regulatory science and AI, preventing a consistent framework. A five-layer nested model for AI design and validation aims to address these issues and streamline AI application design and validation, improving fairness, trust, and AI adoption. This model aligns with regulations, addresses AI practitioner's daily challenges, and offers prescriptive guidance for determining appropriate evaluation approaches by identifying unique validity threats. We have three recommendations motivated by this model: authors should distinguish between layers when claiming contributions to clarify the specific areas in which the contribution is made and to avoid confusion, authors should explicitly state upstream assumptions to ensure that the context and limitations of their AI system are clearly understood, AI venues should promote thorough testing and validation of AI systems and their compliance with regulatory requirements.
- Abstract(参考訳): 成長するAI分野は、信頼、透明性、公正、差別といった課題に直面している。
新しい規制の必要性にもかかわらず、規制科学とAIの間にはミスマッチがあり、一貫したフレームワークが妨げられている。
AI設計とバリデーションのための5層ネストモデルでは、これらの問題に対処し、AIアプリケーションの設計とバリデーションを合理化し、公正性、信頼、AIの採用を改善することを目的としている。
このモデルは規則に準拠し、AI実践者の日々の課題に対処し、ユニークな妥当性の脅威を特定して適切な評価アプローチを決定するための規範的なガイダンスを提供する。
著者は、コントリビューションが行われる特定の領域を明確にするために貢献を主張するときにレイヤを区別し、混乱を避けるために、著者は、AIシステムのコンテキストと制限が明確に理解されていることを保証するために、アップストリームの仮定を明示的に記述する必要がある。
関連論文リスト
- Declare and Justify: Explicit assumptions in AI evaluations are necessary for effective regulation [2.07180164747172]
規制は、開発者が評価に関する主要な前提を明示的に識別し、正当化する必要がある、と我々は主張する。
我々は、包括的脅威モデリング、プロキシタスクの妥当性、適切な能力付与など、AI評価における中核的な仮定を特定する。
提案したアプローチは,AI開発における透明性の向上を目標とし,先進的なAIシステムのより効果的なガバナンスに向けた実践的な道筋を提供する。
論文 参考訳(メタデータ) (2024-11-19T19:13:56Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
本稿では、AIが倫理的で、制御可能で、実行可能で、望ましいものであることを保証するフレームワークを紹介する。
異なるケーススタディは、学術と実践の両方の環境でAIを統合することで、このフレームワークを検証する。
論文 参考訳(メタデータ) (2024-09-25T12:39:28Z) - The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act [6.9060054915724]
AI法は、欧州連合全体のAIシステムの規制である。
我々は、不確実性推定が、実世界でモデルをデプロイするために必要なコンポーネントであるべきだと論じる。
論文 参考訳(メタデータ) (2024-08-20T23:59:51Z) - An FDA for AI? Pitfalls and Plausibility of Approval Regulation for Frontier Artificial Intelligence [0.0]
我々は、フロンティアAIの規制に対する承認規制、すなわち、実験的なミニマと、その実験で部分的にまたは完全に条件付けられた政府のライセンスとを組み合わせた製品の適用性について検討する。
承認規制が単に適用されたとしても、フロンティアAIのリスクには不適当であると考える理由はいくつかある。
規制開発における政策学習と実験の役割を強調して締めくくる。
論文 参考訳(メタデータ) (2024-08-01T17:54:57Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
これは、数学的推論に倫理的考察をもたらす重要な方法であると主張する。
我々は、2021年12月のOmicron型COVID-19の拡散について、英国政府に助言するために使用される競合モデルの文脈内でこれらのアイデアを実証する。
論文 参考訳(メタデータ) (2023-09-11T15:13:36Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。