論文の概要: The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act
- arxiv url: http://arxiv.org/abs/2408.11249v1
- Date: Tue, 20 Aug 2024 23:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 18:58:50.478522
- Title: The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act
- Title(参考訳): EU AI法における汎用AIの不確実性推定のジレンマ
- Authors: Matias Valdenegro-Toro, Radina Stoykova,
- Abstract要約: AI法は、欧州連合全体のAIシステムの規制である。
我々は、不確実性推定が、実世界でモデルをデプロイするために必要なコンポーネントであるべきだと論じる。
- 参考スコア(独自算出の注目度): 6.9060054915724
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The AI act is the European Union-wide regulation of AI systems. It includes specific provisions for general-purpose AI models which however need to be further interpreted in terms of technical standards and state-of-art studies to ensure practical compliance solutions. This paper examines the AI act requirements for providers and deployers of general-purpose AI and further proposes uncertainty estimation as a suitable measure for legal compliance and quality assurance in training of such models. We argue that uncertainty estimation should be a required component for deploying models in the real world, and under the EU AI Act, it could fulfill several requirements for transparency, accuracy, and trustworthiness. However, generally using uncertainty estimation methods increases the amount of computation, producing a dilemma, as computation might go over the threshold ($10^{25}$ FLOPS) to classify the model as a systemic risk system which bears more regulatory burden.
- Abstract(参考訳): AI法は、欧州連合全体のAIシステムの規制である。
汎用AIモデルの具体的規定を含むが、実際のコンプライアンスソリューションを保証するためには、技術的標準や最先端の研究の観点からさらに解釈する必要がある。
本稿では、汎用AIのプロバイダとデプロイ者に対するAI行動要件について検討し、また、そのようなモデルのトレーニングにおける法的なコンプライアンスと品質保証に適した尺度として、不確実性推定を提案する。
我々は、不確実性推定が、現実世界にモデルをデプロイするために必要なコンポーネントであるべきだと主張しており、EU AI Actの下では、透明性、正確性、信頼性に関するいくつかの要件を満たすことができる。
しかし、一般に不確実性推定法を用いることで計算量が増加し、ジレンマが発生する。これは計算がしきい値(10^{25}$ FLOPS)を超えて、より規制上の負担を伴うシステム的リスクシステムとして分類されるためである。
関連論文リスト
- Declare and Justify: Explicit assumptions in AI evaluations are necessary for effective regulation [2.07180164747172]
規制は、開発者が評価に関する主要な前提を明示的に識別し、正当化する必要がある、と我々は主張する。
我々は、包括的脅威モデリング、プロキシタスクの妥当性、適切な能力付与など、AI評価における中核的な仮定を特定する。
提案したアプローチは,AI開発における透明性の向上を目標とし,先進的なAIシステムのより効果的なガバナンスに向けた実践的な道筋を提供する。
論文 参考訳(メタデータ) (2024-11-19T19:13:56Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception [4.075971633195745]
ディープニューラルネットワーク(DNN)は、自動運転車の知覚機能の中心となっている。
EU(EU)人工知能(AI)法は、AIシステムの厳格な規範と標準を確立することによって、これらの課題に対処することを目的としている。
本稿では、DNNに基づく知覚システムに関するEU AI法から生じる要件を要約し、ADにおける既存の生成AIアプリケーションを体系的に分類する。
論文 参考訳(メタデータ) (2024-08-30T12:01:06Z) - A Nested Model for AI Design and Validation [0.5120567378386615]
新しい規制の必要性にもかかわらず、規制科学とAIの間にはミスマッチがある。
AI設計と検証のための5層ネストモデルが、これらの問題に対処することを目指している。
論文 参考訳(メタデータ) (2024-06-08T12:46:12Z) - Navigating the EU AI Act: A Methodological Approach to Compliance for Safety-critical Products [0.0]
本稿では,リスクの高いAIシステムに対するEU AI Act要件を解釈するための方法論を提案する。
まず,AIシステムに対する製品品質モデルの拡張を提案し,現行の品質モデルではカバーされない法に関する属性を取り入れた。
次に、ステークホルダーレベルで技術的要件を導出するための契約ベースのアプローチを提案します。
論文 参考訳(メタデータ) (2024-03-25T14:32:18Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Functional trustworthiness of AI systems by statistically valid testing [7.717286312400472]
著者らは、現在のEU人工知能(AI)法の草案で要求される不適切な措置と手続きのために、欧州市民の安全、健康、および権利を懸念している。
私たちは、現在のEU AI Actの草案だけでなく、CEN/CENELECの標準化活動も、AIシステムの真の機能保証は非現実的であり、複雑すぎるという立場に頼っていることを観察しています。
論文 参考訳(メタデータ) (2023-10-04T11:07:52Z) - Calibrating AI Models for Wireless Communications via Conformal
Prediction [55.47458839587949]
コンフォーマル予測は,通信システムにおけるAIの設計に初めて適用される。
本稿では,形式的校正保証付き決定を生成するAIモデルを得るための一般フレームワークとしての共形予測の適用について検討する。
論文 参考訳(メタデータ) (2022-12-15T12:52:23Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。