論文の概要: The Potential and Perils of Generative Artificial Intelligence for Quality Improvement and Patient Safety
- arxiv url: http://arxiv.org/abs/2407.16902v1
- Date: Sun, 23 Jun 2024 15:01:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:19:29.695999
- Title: The Potential and Perils of Generative Artificial Intelligence for Quality Improvement and Patient Safety
- Title(参考訳): 品質改善と患者安全のための生成人工知能の可能性と課題
- Authors: Laleh Jalilian, Daniel McDuff, Achuta Kadambi,
- Abstract要約: ジェネレーティブ人工知能(GenAI)は、患者の医療の質と安全性を高める自動化を通じて、医療を改善する可能性がある。
我々は、医療におけるGenAIの即時適用は、明確に定義された、低いリスク、高い価値、狭いアプリケーションを通して行われると仮定する。
我々はこれを、臨床成績を改善するエンドツーエンドの臨床意思決定のための汎用AIモデルと対比する。
- 参考スコア(独自算出の注目度): 27.753117791280857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative artificial intelligence (GenAI) has the potential to improve healthcare through automation that enhances the quality and safety of patient care. Powered by foundation models that have been pretrained and can generate complex content, GenAI represents a paradigm shift away from the more traditional focus on task-specific classifiers that have dominated the AI landscape thus far. We posit that the imminent application of GenAI in healthcare will be through well-defined, low risk, high value, and narrow applications that automate healthcare workflows at the point of care using smaller foundation models. These models will be finetuned for different capabilities and application specific scenarios and will have the ability to provide medical explanations, reference evidence within a retrieval augmented framework and utilizing external tools. We contrast this with a general, all-purpose AI model for end-to-end clinical decision making that improves clinician performance, including safety-critical diagnostic tasks, which will require greater research prior to implementation. We consider areas where 'human in the loop' Generative AI can improve healthcare quality and safety by automating mundane tasks. Using the principles of implementation science will be critical for integrating 'end to end' GenAI systems that will be accepted by healthcare teams.
- Abstract(参考訳): ジェネレーティブ人工知能(GenAI)は、患者の医療の質と安全性を高める自動化を通じて、医療を改善する可能性がある。
GenAIは、事前にトレーニングされ、複雑なコンテンツを生成することができる基礎モデルによって支えられている。
我々は、医療におけるGenAIの差し迫った応用は、より小さな基礎モデルを使用して医療ワークフローを自動化する、明確に定義された、低いリスク、高い価値、狭いアプリケーションを通じて行われると仮定する。
これらのモデルは、さまざまな機能やアプリケーション固有のシナリオに対して微調整され、医学的な説明や、検索拡張フレームワーク内の証拠の参照、外部ツールの利用が可能になる。
これは、安全クリティカルな診断タスクを含む臨床成績を改善する、エンドツーエンドの臨床意思決定のための汎用AIモデルと対比する。
ジェネレーティブAIは、日常的なタスクを自動化することで、医療の質と安全性を向上させることができる。
医療チームが受け入れる'エンド・トゥ・エンド'なGenAIシステムを統合するためには、実装科学の原則を使用することが重要です。
関連論文リスト
- Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
ジェネレーティブAIは、健康経済学と成果研究(HEOR)において大きな可能性を秘めている
生成AIは、HEORに大きな可能性を示し、効率性、生産性を高め、複雑な課題に対する新しいソリューションを提供する。
ファウンデーションモデルは複雑なタスクを自動化する上で有望だが、科学的信頼性、バイアス、解釈可能性、ワークフローの統合には課題が残っている。
論文 参考訳(メタデータ) (2024-10-26T15:42:50Z) - Generative AI for Health Technology Assessment: Opportunities, Challenges, and Policy Considerations [12.73011921253]
本稿では、医療技術評価(HTA)のための生成人工知能(AI)と大規模言語モデル(LLM)を含む基礎モデルについて紹介する。
本研究は, 4つの重要な領域, 合成証拠, 証拠生成, 臨床試験, 経済モデリングにおける応用について検討する。
約束にもかかわらず、これらの技術は急速に改善されているものの、まだ初期段階にあり、HTAへの適用には慎重な評価が引き続き必要である。
論文 参考訳(メタデータ) (2024-07-09T09:25:27Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
我々はカスタムXAIフレームワークを活用し、LIME(Local Interpretable Model-Agnostic Explanations)、SHAP(SHapley Additive ExPlanations)、Grad-Cam(Grad-weighted Class Activation Mapping)といったテクニックを取り入れた。
提案手法は, 戦略的医療手法の有効性を高め, 信頼度を高め, 医療応用の理解を促進することを目的としている。
我々はXAIフレームワークを脳腫瘍検出に応用し,正確かつ透明な診断方法を示した。
論文 参考訳(メタデータ) (2024-03-07T01:08:41Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - RAISE -- Radiology AI Safety, an End-to-end lifecycle approach [5.829180249228172]
放射線学へのAIの統合は、臨床ケアの供給と効率を改善する機会をもたらす。
モデルが安全性、有効性、有効性の最高基準を満たすことに注力すべきである。
ここで提示されるロードマップは、放射線学におけるデプロイ可能で信頼性があり、安全なAIの達成を早めることを目的としている。
論文 参考訳(メタデータ) (2023-11-24T15:59:14Z) - Applying Bayesian Ridge Regression AI Modeling in Virus Severity
Prediction [0.0]
医療専門家に最先端ウイルス分析をもたらすAIモデルであるBayesian Ridge Regressionの長所と短所をレビューする。
モデルの精度評価は有望な結果を示し、改善の余地があった。
さらに、重症度指数は、患者のケアニーズを概観するための貴重なツールとして機能する。
論文 参考訳(メタデータ) (2023-10-14T04:17:00Z) - A Revolution of Personalized Healthcare: Enabling Human Digital Twin
with Mobile AIGC [54.74071593520785]
モバイルAIGCは、ヒューマンデジタルツイン(HDT)と呼ばれる新興アプリケーションのキーとなる技術である
モバイルAIGCによって強化されたHDTは、まれな疾患データを生成し、高忠実なデジタルツインをモデル化し、多目的テストベッドを構築し、24/7のカスタマイズ医療サービスを提供することで、パーソナライズされたヘルスケアに革命をもたらすことが期待されている。
論文 参考訳(メタデータ) (2023-07-22T15:59:03Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。