論文の概要: Automatic Categorization of GitHub Actions with Transformers and Few-shot Learning
- arxiv url: http://arxiv.org/abs/2407.16946v1
- Date: Wed, 24 Jul 2024 02:27:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 15:02:58.566649
- Title: Automatic Categorization of GitHub Actions with Transformers and Few-shot Learning
- Title(参考訳): トランスフォーマーとFew-shot LearningによるGitHubアクションの自動分類
- Authors: Phuong T. Nguyen, Juri Di Rocco, Claudio Di Sipio, Mudita Shakya, Davide Di Ruscio, Massimiliano Di Penta,
- Abstract要約: GitHub Actions(GHA)は、開発者がパイプラインを作成してメンテナンスするための実用的なツールを提供するために考案されたものだ。
検索エンジンにアクションを公開するために、GitHubは開発者がそれらを1つ以上のカテゴリに手動で割り当てることを可能にする。
私たちはGitHubでアクションの可視性を高めるための実用的なソリューションであるGavelを提案する。
- 参考スコア(独自算出の注目度): 12.254055731378045
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the GitHub ecosystem, workflows are used as an effective means to automate development tasks and to set up a Continuous Integration and Delivery (CI/CD pipeline). GitHub Actions (GHA) have been conceived to provide developers with a practical tool to create and maintain workflows, avoiding reinventing the wheel and cluttering the workflow with shell commands. Properly leveraging the power of GitHub Actions can facilitate the development processes, enhance collaboration, and significantly impact project outcomes. To expose actions to search engines, GitHub allows developers to assign them to one or more categories manually. These are used as an effective means to group actions sharing similar functionality. Nevertheless, while providing a practical way to execute workflows, many actions have unclear purposes, and sometimes they are not categorized. In this work, we bridge such a gap by conceptualizing Gavel, a practical solution to increasing the visibility of actions in GitHub. By leveraging the content of README.MD files for each action, we use Transformer--a deep learning algorithm--to assign suitable categories to the action. We conducted an empirical investigation and compared Gavel with a state-of-the-art baseline. The experimental results show that our proposed approach can assign categories to GitHub actions effectively, thus outperforming the state-of-the-art baseline.
- Abstract(参考訳): GitHubエコシステムでは、ワークフローが開発タスクの自動化と継続的インテグレーションとデリバリ(CI/CDパイプライン)のセットアップに有効な手段として使用される。
GitHub Actions(GHA)は、開発者がワークフローを作成してメンテナンスするための実用的なツールを提供し、車輪の再発明を避け、シェルコマンドでワークフローを乱すように考えられている。
GitHub Actionsのパワーを適切に活用することは、開発プロセスを促進し、コラボレーションを強化し、プロジェクトの成果に大きな影響を与える。
検索エンジンにアクションを公開するために、GitHubは開発者がそれらを1つ以上のカテゴリに手動で割り当てることを可能にする。
これらは、同様の機能を共有するアクションをグループ化する効果的な手段として使用される。
それでも、ワークフローを実行する実践的な方法を提供する一方で、多くのアクションは明確な目的を持ち、時には分類されない。
本稿では、GitHubにおけるアクションの可視性を高めるための実践的なソリューションであるGavelを概念化することによって、このようなギャップを埋める。
アクション毎にREADME.MDファイルの内容を活用することで、ディープラーニングアルゴリズムであるTransformerを用いて、アクションに適切なカテゴリを割り当てる。
実験的な調査を行い,Gvelを最先端のベースラインと比較した。
実験の結果,提案手法はGitHubのアクションにカテゴリを効果的に割り当てることが可能であり,最先端のベースラインよりも優れていることがわかった。
関連論文リスト
- WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
ワークフローオーケストレーションにおける大規模言語モデルの能力を高めるための,データ中心のフレームワークであるLLMを提案する。
最初は106,763のサンプルで大規模な微調整Benchを構築し、28のカテゴリにわたる83のアプリケーションから1,503のAPIをカバーしている。
LlamaLlamaは複雑なAPIをオーケストレーションする能力を示しながら、優れた一般化性能を実現している。
論文 参考訳(メタデータ) (2024-11-08T09:58:02Z) - DynaSaur: Large Language Agents Beyond Predefined Actions [108.75187263724838]
既存のLLMエージェントシステムは、通常、各ステップで固定セットと事前定義されたセットからアクションを選択する。
動作の動的生成と構成をオンラインで実現するLLMエージェントフレームワークを提案する。
GAIAベンチマーク実験により, このフレームワークは柔軟性が向上し, 従来の手法よりも優れていたことが確認された。
論文 参考訳(メタデータ) (2024-11-04T02:08:59Z) - The Hidden Costs of Automation: An Empirical Study on GitHub Actions Workflow Maintenance [45.53834452021771]
GitHub Actions(GA)は、エンジニアリングタスクの自動実行を合理化するオーケストレーションプラットフォームである。
欠陥の修正、依存関係の更新、あるいは既存のワークフローファイルの修正には、人間の介入が必要である。
論文 参考訳(メタデータ) (2024-09-04T01:33:16Z) - Detecting Continuous Integration Skip : A Reinforcement Learning-based Approach [0.4297070083645049]
継続的統合(CI)プラクティスは、自動ビルドとテストプロセスを採用することで、コード変更のシームレスな統合を促進する。
Travis CIやGitHub Actionsといった一部のフレームワークは、CIプロセスの簡素化と強化に大きく貢献している。
開発者はCI実行に適したコミットやスキップの候補としてコミットを正確にフラグ付けすることの難しさに悩まされ続けている。
論文 参考訳(メタデータ) (2024-05-15T18:48:57Z) - On the effectiveness of Large Language Models for GitHub Workflows [9.82254417875841]
大規模言語モデル(LLM)は、様々なソフトウェア開発タスクにおいてその効果を実証している。
異なるレベルのプロンプトを持つ5つのワークフロー関連タスクにおけるLLMの有効性を理解するための、最初の総合的研究を行う。
現状のLLMと細調整した3種類のLLMの評価結果から,LLMの現在の有効性と欠点について,様々な興味深い知見が得られた。
論文 参考訳(メタデータ) (2024-03-19T05:14:12Z) - Executable Code Actions Elicit Better LLM Agents [76.95566120678787]
この研究は、Pythonコードを使用して、Large Language Model(LLM)エージェントのアクションを統一されたアクション空間(CodeAct)に統合することを提案する。
Pythonインタプリタと統合されたCodeActは、コードアクションを実行し、事前アクションを動的に修正したり、マルチターンインタラクションを通じて新しい観察に新しいアクションを発行することができる。
CodeActのパフォーマンス向上は、解釈可能なコードを実行し、自然言語を使ってユーザとコラボレーションすることで、環境と対話するオープンソースのLLMエージェントを構築する動機となります。
論文 参考訳(メタデータ) (2024-02-01T21:38:58Z) - GitAgent: Facilitating Autonomous Agent with GitHub by Tool Extension [81.44231422624055]
さまざまなタスクを実行できる外部ツールを備えた大規模言語モデル(LLM)に焦点が当てられている。
本稿では,GitHubから自動ツール拡張を実現するエージェントであるGitAgentを紹介する。
論文 参考訳(メタデータ) (2023-12-28T15:47:30Z) - Automated DevOps Pipeline Generation for Code Repositories using Large
Language Models [5.011328607647701]
調査では、GitHubの生成におけるGPT 3.5とGPT 4の習熟度を精査するとともに、最も効率的なパイプライン構築におけるさまざまなプロンプト要素の影響を評価している。
GPTは4。
Probot上に構築されたGitHubアプリを導入し、GitHubエコシステム内でワークフロー生成を自動化する。
論文 参考訳(メタデータ) (2023-12-20T17:47:52Z) - A Preliminary Investigation of MLOps Practices in GitHub [10.190501703364234]
機械学習アプリケーションはMLOpsへの関心が高まっている。
GitHubから取得したML対応システムのセットで実装されているMLOpsプラクティスについて、まず最初に調査する。
論文 参考訳(メタデータ) (2022-09-23T07:29:56Z) - GitHub Actions: The Impact on the Pull Request Process [7.047566396769727]
本研究では、プロジェクトがGitHub Actionsをどのように利用するか、開発者がGitHub Actionsについて何を議論しているか、プロジェクトアクティビティインジケータが採用後にどのように変化するかを調査する。
私たちの調査によると、5,000のリポジトリのうち1489がGitHub Actionsを採用しています。
また、GitHub Actionsの採用によってプルリクエスト(PR)の拒絶が増加し、受け入れられたPRでのコミュニケーションが増加し、拒否されたPRでのコミュニケーションが減少することが示唆された。
論文 参考訳(メタデータ) (2022-06-28T16:24:17Z) - Visual Transformer for Task-aware Active Learning [49.903358393660724]
プールベースのアクティブラーニングのための新しいパイプラインを提案する。
提案手法は,学習中に使用可能なアンラベリング例を利用して,ラベル付き例との相関関係を推定する。
ビジュアルトランスフォーマーは、ラベル付き例と非ラベル付き例の間の非ローカルビジュアル概念依存性をモデル化する。
論文 参考訳(メタデータ) (2021-06-07T17:13:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。