論文の概要: A Machine Learning Model for Predicting, Diagnosing, and Mitigating
Health Disparities in Hospital Readmission
- arxiv url: http://arxiv.org/abs/2206.06279v2
- Date: Sun, 31 Jul 2022 15:23:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 17:44:16.722153
- Title: A Machine Learning Model for Predicting, Diagnosing, and Mitigating
Health Disparities in Hospital Readmission
- Title(参考訳): 病院入院における健康格差の予測、診断、緩和のための機械学習モデル
- Authors: Shaina Raza
- Abstract要約: 本稿では,データ中のバイアスの検出と緩和とモデル予測が可能な機械学習パイプラインを提案する。
提案手法の有効性を,精度と公正度の測定値を用いて評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The management of hyperglycemia in hospitalized patients has a significant
impact on both morbidity and mortality. Therefore, it is important to predict
the need for diabetic patients to be hospitalized. However, using standard
machine learning approaches to make these predictions may result in health
disparities caused by biases in the data related to social determinants (such
as race, age, and gender). These biases must be removed early in the data
collection process, before they enter the system and are reinforced by model
predictions, resulting in biases in the model's decisions. In this paper, we
propose a machine learning pipeline capable of making predictions as well as
detecting and mitigating biases in the data and model predictions. This
pipeline analyses the clinical data and determines whether biases exist in the
data, if so, it removes those biases before making predictions. We evaluate the
performance of the proposed method on a clinical dataset using accuracy and
fairness measures. The findings of the results show that when we mitigate
biases early during the data ingestion, we get fairer predictions.
- Abstract(参考訳): 入院患者の高血糖管理は死亡率と死亡率の両方に大きな影響を及ぼす。
したがって、糖尿病患者が入院する必要性を予測することが重要である。
しかし、これらの予測を標準的な機械学習アプローチで行うと、社会的決定要因(人種、年齢、性別など)に関するデータのバイアスによって引き起こされる健康格差が生じる可能性がある。
これらのバイアスは、データ収集プロセスの初期にシステムに入る前に取り除かなければならず、モデル予測によって強化され、モデルの決定にバイアスが生じる。
本稿では,データおよびモデル予測におけるバイアスの検出と緩和だけでなく,予測を行うことができる機械学習パイプラインを提案する。
このパイプラインは臨床データを分析し、もしデータの中にバイアスが存在するかどうかを判断する。
提案手法の有効性を,精度と公正度の測定値を用いて評価した。
その結果,データ摂取の早期にバイアスを軽減すると,より公平な予測が得られることがわかった。
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - When accurate prediction models yield harmful self-fulfilling prophecies [16.304160143287366]
意思決定に予測モデルを使うことは有害な決定につながる可能性があることを示す。
我々の主な成果は、そのような予測モデルの集合を形式的に特徴づけることである。
これらの結果は、予測モデルの検証、デプロイ、評価のための標準プラクティスを改訂する必要があることを示している。
論文 参考訳(メタデータ) (2023-12-02T19:39:50Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Learning to Predict with Supporting Evidence: Applications to Clinical
Risk Prediction [9.199022926064009]
機械学習モデルがヘルスケアに与える影響は、医療専門家がこれらのモデルによって予測される信頼度に依存する。
予測が信頼されるべき理由に関するドメイン関連証拠を,臨床専門性のある人に提供するための方法を提示する。
論文 参考訳(メタデータ) (2021-03-04T00:26:32Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
臨床劣化を示す各種臨床事象の早期予測のための解釈可能なモデルを構築した。
このモデルは2つのデータセットと4つの臨床イベントで評価される。
私達のモデルは手動で記録された特徴を要求しないで完全に自動化することができます。
論文 参考訳(メタデータ) (2021-02-11T11:55:08Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Impact of Medical Data Imprecision on Learning Results [9.379890125442333]
医療応用におけるインプレクションが予測結果に与える影響について検討した。
トレーニング済みのモデルを用いて、患者の甲状腺機能亢進症の将来状態を予測する。
論文 参考訳(メタデータ) (2020-07-24T06:54:57Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。