論文の概要: SDoH-GPT: Using Large Language Models to Extract Social Determinants of Health (SDoH)
- arxiv url: http://arxiv.org/abs/2407.17126v1
- Date: Wed, 24 Jul 2024 09:57:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:14:00.042630
- Title: SDoH-GPT: Using Large Language Models to Extract Social Determinants of Health (SDoH)
- Title(参考訳): SDoH-GPT:大規模言語モデルを用いた社会要因の抽出(SDoH)
- Authors: Bernardo Consoli, Xizhi Wu, Song Wang, Xinyu Zhao, Yanshan Wang, Justin Rousseau, Tom Hartvigsen, Li Shen, Huanmei Wu, Yifan Peng, Qi Long, Tianlong Chen, Ying Ding,
- Abstract要約: SDoH-GPTは,医療用ノートから健康の社会的決定因子を抽出する,シンプルで効果的なLarge Language Model (LLM) 法である。
これは時間とコストでそれぞれ10倍と20倍の削減を実現し、コーエンのカッパの最大0.92で測定された人間のアノテータとの整合性が向上した。
本研究は, LLMを医療ノート分類に革命をもたらす可能性を強調し, 時間とコストを大幅に削減して, 高精度な分類を実現する能力を示す。
- 参考スコア(独自算出の注目度): 43.79125048893811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extracting social determinants of health (SDoH) from unstructured medical notes depends heavily on labor-intensive annotations, which are typically task-specific, hampering reusability and limiting sharing. In this study we introduced SDoH-GPT, a simple and effective few-shot Large Language Model (LLM) method leveraging contrastive examples and concise instructions to extract SDoH without relying on extensive medical annotations or costly human intervention. It achieved tenfold and twentyfold reductions in time and cost respectively, and superior consistency with human annotators measured by Cohen's kappa of up to 0.92. The innovative combination of SDoH-GPT and XGBoost leverages the strengths of both, ensuring high accuracy and computational efficiency while consistently maintaining 0.90+ AUROC scores. Testing across three distinct datasets has confirmed its robustness and accuracy. This study highlights the potential of leveraging LLMs to revolutionize medical note classification, demonstrating their capability to achieve highly accurate classifications with significantly reduced time and cost.
- Abstract(参考訳): 健康の社会的決定因子(SDoH)を非構造化医療ノートから抽出することは、労働集約的なアノテーションに大きく依存する。
本研究では,SDoH-GPTを導入した。LLM法は,医用アノテーションや人為的介入に頼らずに,SDoHを抽出するための対照的な例と簡潔な指示を活用できる。
これは時間とコストでそれぞれ10倍と20倍の削減を実現し、コーエンのカッパの最大0.92で測定された人間のアノテータとの整合性が向上した。
SDoH-GPTとXGBoostの革新的な組み合わせは両者の強みを活用し、精度と計算効率を確保しつつ、0.90以上のAUROCスコアを一貫して維持する。
3つの異なるデータセットでテストした結果、その堅牢性と正確性が確認された。
本研究は, LLMを医療ノート分類に革命をもたらす可能性を強調し, 時間とコストを大幅に削減して, 高精度な分類を実現する能力を示す。
関連論文リスト
- Weakly Supervised Intracranial Hemorrhage Segmentation with YOLO and an Uncertainty Rectified Segment Anything Model [0.5578116134031106]
頭蓋内出血(ICH)は、治療成績と生存率を改善するために、迅速かつ正確な診断を必要とする生命予後である。
近年, 教師付き深層学習の進歩により, 医用画像の解析が大幅に向上した。
大量の専門家準備セグメンテーションデータの必要性を軽減するため、我々は弱い教師付きICHセグメンテーション法を開発した。
論文 参考訳(メタデータ) (2024-07-29T23:40:13Z) - Extracting Social Determinants of Health from Pediatric Patient Notes Using Large Language Models: Novel Corpus and Methods [17.83326146480516]
健康の社会的決定因子(SDoH)は、健康結果を形成する上で重要な役割を担っている。
小児社会史コーパス(PedSHAC)について紹介する。
我々は、微調整および文脈内学習手法を用いて、詳細なSDoH表現の自動抽出を評価する。
論文 参考訳(メタデータ) (2024-03-31T23:37:18Z) - ALPHA: AnomaLous Physiological Health Assessment Using Large Language
Models [4.247764575421617]
大規模言語モデル(LLM)は、医療指標を決定する上で非常に優れた性能を示す。
特別適応GPTモデルでは,サイクルカウントで1bpm未満の誤差を達成できた。
この研究は、高度なAIヘルスアシスタントにおける健康データ分析ツールと重要な要素としてのLLMの二重の役割を強調した。
論文 参考訳(メタデータ) (2023-11-21T11:09:57Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - A Marker-based Neural Network System for Extracting Social Determinants
of Health [12.6970199179668]
健康の社会的決定因子(SDoH)は、患者の医療の質と格差を左右する。
多くのSDoHアイテムは、電子健康記録の構造化形式でコード化されていない。
我々は,臨床ノートから自動的にSDoH情報を抽出する,名前付きエンティティ認識(NER),関係分類(RC),テキスト分類手法を含む多段階パイプラインを探索する。
論文 参考訳(メタデータ) (2022-12-24T18:40:23Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。