論文の概要: Weakly Supervised Intracranial Hemorrhage Segmentation with YOLO and an Uncertainty Rectified Segment Anything Model
- arxiv url: http://arxiv.org/abs/2407.20461v3
- Date: Wed, 4 Sep 2024 03:17:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 01:49:25.777836
- Title: Weakly Supervised Intracranial Hemorrhage Segmentation with YOLO and an Uncertainty Rectified Segment Anything Model
- Title(参考訳): YOLOによる頭蓋内出血分節の軽度改善と不確実性切除分節モデル
- Authors: Pascal Spiegler, Amirhossein Rasoulian, Yiming Xiao,
- Abstract要約: 頭蓋内出血(ICH)は、治療成績と生存率を改善するために、迅速かつ正確な診断を必要とする生命予後である。
近年, 教師付き深層学習の進歩により, 医用画像の解析が大幅に向上した。
大量の専門家準備セグメンテーションデータの必要性を軽減するため、我々は弱い教師付きICHセグメンテーション法を開発した。
- 参考スコア(独自算出の注目度): 0.5578116134031106
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Intracranial hemorrhage (ICH) is a life-threatening condition that requires rapid and accurate diagnosis to improve treatment outcomes and patient survival rates. Recent advancements in supervised deep learning have greatly improved the analysis of medical images, but often rely on extensive datasets with high-quality annotations, which are costly, time-consuming, and require medical expertise to prepare. To mitigate the need for large amounts of expert-prepared segmentation data, we have developed a novel weakly supervised ICH segmentation method that utilizes the YOLO object detection model and an uncertainty-rectified Segment Anything Model (SAM). In addition, we have proposed a novel point prompt generator for this model to further improve segmentation results with YOLO-predicted bounding box prompts. Our approach achieved a high accuracy of 0.933 and an AUC of 0.796 in ICH detection, along with a mean Dice score of 0.629 for ICH segmentation, outperforming existing weakly supervised and popular supervised (UNet and Swin-UNETR) approaches. Overall, the proposed method provides a robust and accurate alternative to the more commonly used supervised techniques for ICH quantification without requiring refined segmentation ground truths during model training.
- Abstract(参考訳): 頭蓋内出血 (ICH) は, 治療成績と生存率を改善するために, 迅速かつ正確な診断を必要とする生命予後である。
教師付き深層学習の最近の進歩は、医用画像の分析を大幅に改善してきたが、しばしば高品質なアノテーションを備えた広範囲なデータセットに依存しており、費用がかかり、時間もかかり、医療の専門知識を必要としている。
そこで我々は, YOLOオブジェクト検出モデルと不確実性補正セグメンテーションモデル(SAM)を利用した, 弱い教師付きICHセグメンテーション法を開発した。
さらに, YOLO予測ボックスプロンプトを用いて, セグメンテーション結果を改善するために, 新たなポイントプロンプト生成器を提案する。
ICH検出の精度は0.933,AUCは0.796,Diceスコアは0.629であった。
提案手法は, モデルトレーニングにおいて, 精巧なセグメンテーション基底の真理を必要とせず, より一般的に使用されているICH定量化手法に, 頑健で正確な代替手段を提供する。
関連論文リスト
- Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Uncertainty-Aware Semi-Supervised Learning for Prostate MRI Zonal
Segmentation [0.9176056742068814]
比較的少数のアノテーションしか必要としない新しい半教師付き学習(SSL)手法を提案する。
提案手法は,近年の深層学習の不確実性推定モデルを用いた擬似ラベル手法を用いる。
提案モデルは,ProstateXデータセットと外部テストセットを用いた実験において,半教師付きモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-05-10T08:50:04Z) - Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning [0.6269243524465492]
頭蓋内出血(ICH、Intracranial hemorrhage)は、タイムリーな診断と正確な治療を必要とする救命救急疾患である。
深層学習技術は、医用画像解析と処理の先駆的なアプローチとして現れてきた。
ICH分類タスクで訓練されたSwin変換器と分類ラベルを併用した,新しいICHセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T00:17:34Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
医用画像セグメンテーションのための新しい不確実性誘導相互整合学習フレームワークを提案する。
タスクレベルの正規化によるタスク内一貫性学習と、タスク間の整合性学習を統合して、幾何学的な形状情報を活用する。
本手法は,ラベルのないデータを活用し,既存の半教師付きセグメンテーション法より優れた性能を実現する。
論文 参考訳(メタデータ) (2021-12-05T08:19:41Z) - Weakly-Supervised Universal Lesion Segmentation with Regional Level Set
Loss [16.80758525711538]
高分解能ネットワーク(HRNet)に基づく新しい弱監督ユニバーサル病変分割法を提案する。
AHRNetはデコーダ、デュアルアテンション、スケールアテンション機構を含む高度な高解像度のディープイメージ機能を提供する。
本手法は,公開大規模deeplesionデータセットとホールドアウトテストセットにおいて,最高の性能を実現する。
論文 参考訳(メタデータ) (2021-05-03T23:33:37Z) - Leveraging Deep Representations of Radiology Reports in Survival
Analysis for Predicting Heart Failure Patient Mortality [10.075717786962896]
臨床テキストのBERTベースの隠れ層表現を用いて患者の生存結果を予測する新しい方法を提案する。
隠れたレイヤは,事前定義された機能よりも予測精度が著しく向上し,c-indexおよび時間依存型aucの平均を5.7%上回った。
論文 参考訳(メタデータ) (2021-05-03T16:54:52Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。