論文の概要: Generative AI in Evidence-Based Software Engineering: A White Paper
- arxiv url: http://arxiv.org/abs/2407.17440v1
- Date: Wed, 24 Jul 2024 17:16:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 13:05:35.484238
- Title: Generative AI in Evidence-Based Software Engineering: A White Paper
- Title(参考訳): エビデンスベースのソフトウェアエンジニアリングにおけるジェネレーティブAI:ホワイトペーパー
- Authors: Mattel Esposito, Andrea Janes, Davide Taibi, Valentina Lenarduzzi,
- Abstract要約: 1年足らずで、実践者や研究者は、生成人工知能の迅速かつ広範な実装を目撃した。
テキストGAI機能により、研究者は世界中で新しい生成シナリオを探索し、すべての時間を要するテキスト生成と分析タスクを簡素化し、急ぐことができる。
現在の調査に基づいて、EBSE研究者を効果的に支援する包括的モデルスイートの作成と実証検証を行う。
- 参考スコア(独自算出の注目度): 10.489725182789885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context. In less than a year practitioners and researchers witnessed a rapid and wide implementation of Generative Artificial Intelligence. The daily availability of new models proposed by practitioners and researchers has enabled quick adoption. Textual GAIs capabilities enable researchers worldwide to explore new generative scenarios simplifying and hastening all timeconsuming text generation and analysis tasks. Motivation. The exponentially growing number of publications in our field with the increased accessibility to information due to digital libraries makes conducting systematic literature reviews and mapping studies an effort and timeinsensitive task Stemmed from this challenge we investigated and envisioned the role of GAIs in evidencebased software engineering. Future Directions. Based on our current investigation we will follow up the vision with the creation and empirical validation of a comprehensive suite of models to effectively support EBSE researchers
- Abstract(参考訳): コンテキスト。
1年足らずで、実践者や研究者は、生成人工知能の迅速かつ広範な実装を目撃した。
実践者や研究者が提案する新しいモデルの日次提供により、迅速な採用が可能になった。
テキストGAI機能により、研究者は世界中で新しい生成シナリオを探索し、すべての時間を要するテキスト生成と分析タスクを簡素化し、急ぐことができる。
モチベーション。
デジタル図書館による情報へのアクセシビリティ向上に伴い,我々の分野における出版物の増加により,組織的な文献レビューや地図作成研究は,この課題から,証拠ベースソフトウェア工学におけるGAIの役割を探求し,考察した。
今後の方向。
現在の調査に基づいて、EBSE研究者を効果的に支援する包括的モデルスイートの作成と実証検証を行う。
関連論文リスト
- O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
本稿では,O1 Replication Journeyに具体化された人工知能研究の先駆的アプローチを紹介する。
我々の方法論は、長期化したチームベースのプロジェクトの不規則性を含む、現代のAI研究における重要な課題に対処する。
本稿では,モデルにショートカットだけでなく,完全な探索プロセスの学習を促す旅行学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-08T15:13:01Z) - OpenResearcher: Unleashing AI for Accelerated Scientific Research [35.31092912532057]
我々は、人工知能(AI)技術を活用して研究プロセスを加速する革新的なプラットフォームであるOpenResearcherを紹介する。
OpenResearcherはRetrieval-Augmented Generation (RAG)に基づいて構築されており、LLM(Large Language Models)と最新のドメイン固有知識を統合する。
我々は、OpenResearcherが研究者のクエリを理解し、科学文献から検索し、検索した情報をフィルタリングし、正確で包括的な回答を提供し、答えを自己修正する様々なツールを開発した。
論文 参考訳(メタデータ) (2024-08-13T14:59:44Z) - Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives [10.16399860867284]
生成人工知能(AI)と大規模言語モデル(LLM)の出現は、自然言語処理(NLP)の新しい時代を象徴している。
本稿では,これらの最先端技術の現状を概観し,その顕著な進歩と広範囲な応用を実証する。
論文 参考訳(メタデータ) (2024-07-20T18:48:35Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
この調査は、コードインテリジェンスの発展に関する体系的なレビューを示す。
50以上の代表モデルとその変種、20以上のタスクのカテゴリ、および680以上の関連する広範な研究をカバーしている。
発達軌道の考察に基づいて、コードインテリジェンスとより広範なマシンインテリジェンスとの間の新たな相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-21T08:54:56Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - Detection of Fake Generated Scientific Abstracts [0.9525711971667679]
学術コミュニティは、現実と人工的に生成されたものとを区別することの難しさについて懸念を表明している。
本研究では,GPT-3モデルを用いて,人工知能による科学論文の要約を生成する。
本稿では,機械学習モデルと組み合わせたテキスト表現手法について検討する。
論文 参考訳(メタデータ) (2023-04-12T20:20:22Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
本稿では,研究論文を対象とした動的読解インタフェースの自動作成を目的としたセマンティック・リーダー・プロジェクトについて述べる。
10のプロトタイプインターフェースが開発され、300人以上の参加者と現実世界のユーザが読書体験を改善している。
本論文は,研究論文を読む際,学者と公衆の面を巡って構築する。
論文 参考訳(メタデータ) (2023-03-25T02:47:09Z) - Automated Mining of Leaderboards for Empirical AI Research [0.0]
本研究では,知識グラフに基づく学術情報組織のためのリーダーボード作成のための包括的アプローチを提案する。
具体的には,最先端のトランスフォーマーモデルであるViz. Bert, SciBert, XLNetを用いたリーダボードの自動構築の問題点について検討する。
その結果、実験的なAI研究の大部分を、知識グラフとして次世代デジタルライブラリにまとめることができる。
論文 参考訳(メタデータ) (2021-08-31T10:00:52Z) - A Survey of Knowledge Tracing: Models, Variants, and Applications [70.69281873057619]
知識追跡は、学生の行動データ分析の基本的なタスクの1つである。
我々は、異なる技術経路を持つ3種類の基本KTモデルを示す。
この急速に成長する分野における今後の研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-05-06T13:05:55Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
本稿では、自然言語処理と機械学習を利用して研究論文から実体や関係を抽出する新しいアーキテクチャを提案する。
本研究では,現在最先端の自然言語処理ツールとテキストマイニングツールを用いて,知識抽出の課題に取り組む。
セマンティックWebドメイン内の論文26,827件から抽出した109,105件のトリプルを含む科学知識グラフを作成した。
論文 参考訳(メタデータ) (2020-10-28T08:31:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。