論文の概要: SV4D: Dynamic 3D Content Generation with Multi-Frame and Multi-View Consistency
- arxiv url: http://arxiv.org/abs/2407.17470v1
- Date: Wed, 24 Jul 2024 17:59:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 12:55:41.674639
- Title: SV4D: Dynamic 3D Content Generation with Multi-Frame and Multi-View Consistency
- Title(参考訳): SV4D:マルチフレームとマルチビューの一貫性を備えた動的3Dコンテンツ生成
- Authors: Yiming Xie, Chun-Han Yao, Vikram Voleti, Huaizu Jiang, Varun Jampani,
- Abstract要約: 本稿では,多フレーム・多視点一貫した動的3Dコンテンツ生成のための遅延ビデオ拡散モデルであるStable Video 4D(SV4D)を提案する。
- 参考スコア(独自算出の注目度): 37.96042037188354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Stable Video 4D (SV4D), a latent video diffusion model for multi-frame and multi-view consistent dynamic 3D content generation. Unlike previous methods that rely on separately trained generative models for video generation and novel view synthesis, we design a unified diffusion model to generate novel view videos of dynamic 3D objects. Specifically, given a monocular reference video, SV4D generates novel views for each video frame that are temporally consistent. We then use the generated novel view videos to optimize an implicit 4D representation (dynamic NeRF) efficiently, without the need for cumbersome SDS-based optimization used in most prior works. To train our unified novel view video generation model, we curated a dynamic 3D object dataset from the existing Objaverse dataset. Extensive experimental results on multiple datasets and user studies demonstrate SV4D's state-of-the-art performance on novel-view video synthesis as well as 4D generation compared to prior works.
- Abstract(参考訳): 本稿では,多フレーム・多視点一貫した動的3Dコンテンツ生成のための遅延ビデオ拡散モデルであるStable Video 4D(SV4D)を提案する。
ビデオ生成と新しいビュー合成のために個別に訓練された生成モデルに依存する従来の方法とは異なり、動的3Dオブジェクトの新しいビュービデオを生成するために統合拡散モデルを設計する。
具体的には、モノクロ参照ビデオが与えられた場合、SV4Dは時間的に一貫したビデオフレームごとに新しいビューを生成する。
次に、生成された新しいビュービデオを用いて、暗黙の4D表現(ダイナミックNeRF)を効率よく最適化する。
統合された新しいビュービデオ生成モデルをトレーニングするために,既存のObjaverseデータセットから動的3Dオブジェクトデータセットをキュレートした。
複数のデータセットとユーザスタディに対する大規模な実験結果から,SV4Dの新規映像合成における最先端性能と,以前の4D生成結果と比較した結果が得られた。
関連論文リスト
- ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis [63.169364481672915]
単一またはスパース画像からジェネリックシーンの高忠実な新規ビューを合成する新しい方法である textbfViewCrafter を提案する。
提案手法は,映像拡散モデルの強力な生成能力と,ポイントベース表現によって提供される粗い3D手がかりを利用して高品質な映像フレームを生成する。
論文 参考訳(メタデータ) (2024-09-03T16:53:19Z) - 4Dynamic: Text-to-4D Generation with Hybrid Priors [56.918589589853184]
本稿では,ビデオによる直接監督によって動的振幅と信頼性を保証し,テキストから4Dへ変換する新しい手法を提案する。
本手法は,テキスト・ツー・4D生成だけでなく,モノクロ映像からの4D生成も可能にしている。
論文 参考訳(メタデータ) (2024-07-17T16:02:55Z) - Animate3D: Animating Any 3D Model with Multi-view Video Diffusion [47.05131487114018]
Animate3Dは静的な3Dモデルをアニメーションするための新しいフレームワークである。
本研究では,3Dオブジェクトのアニメーション化に多視点ビデオ拡散プリミティブを活用するために,再構成と4Dスコア蒸留サンプリング(4D-SDS)を組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T05:35:57Z) - EG4D: Explicit Generation of 4D Object without Score Distillation [105.63506584772331]
DG4Dは、スコア蒸留なしで高品質で一貫した4Dアセットを生成する新しいフレームワークである。
私たちのフレームワークは、世代品質のベースラインをかなりのマージンで上回ります。
論文 参考訳(メタデータ) (2024-05-28T12:47:22Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
高速でスケーラブルな4Dコンテンツ生成のための新しいフレームワーク textbfDiffusion4D を提案する。
ダイナミックな3Dアセットの軌道ビューを合成できる4D対応ビデオ拡散モデルを開発した。
提案手法は, 生成効率と4次元幾何整合性の観点から, 従来の最先端技術を超えている。
論文 参考訳(メタデータ) (2024-05-26T17:47:34Z) - Diffusion$^2$: Dynamic 3D Content Generation via Score Composition of Video and Multi-view Diffusion Models [6.738732514502613]
Diffusion$2$は動的3Dコンテンツ作成のための新しいフレームワークである。
3次元モデルからの幾何的一貫性と時間的滑らかさに関する知識を精査し、密集した多視点画像を直接サンプリングする。
非常にシームレスで一貫した4Dアセットを生成する上で,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2024-04-02T17:58:03Z) - SV3D: Novel Multi-view Synthesis and 3D Generation from a Single Image using Latent Video Diffusion [33.69006364120861]
安定ビデオ3D(SV3D) - 3Dオブジェクトの周囲の高解像度・画像・マルチビュー生成のための潜時ビデオ拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-03-18T17:46:06Z) - Efficient4D: Fast Dynamic 3D Object Generation from a Single-view Video [42.10482273572879]
本稿では,効率的な4Dオブジェクト生成フレームワークであるEfficient4Dを提案する。
異なるカメラビューの下で高品質な時空一貫性の画像を生成し、ラベル付きデータとして使用する。
合成ビデオと実ビデオの両方の実験によると、Efficient4Dのスピードは10倍に向上している。
論文 参考訳(メタデータ) (2024-01-16T18:58:36Z) - Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed
Diffusion Models [94.07744207257653]
我々は、探索されていないテキストから4D設定に焦点をあて、動的にアニメーションされた3Dオブジェクトを合成する。
4次元オブジェクト最適化において,テキスト・ツー・イメージ,テキスト・ツー・ビデオ,および3次元認識型多視点拡散モデルを組み合わせてフィードバックを提供する。
論文 参考訳(メタデータ) (2023-12-21T11:41:02Z) - Text-To-4D Dynamic Scene Generation [111.89517759596345]
テキスト記述から3次元動的シーンを生成するMAV3D(Make-A-Video3D)を提案する。
提案手法では, シーンの外観, 密度, 動きの整合性に最適化された4次元動的ニューラルラジアンス場(NeRF)を用いる。
提供されるテキストから出力されるダイナミックビデオは、任意のカメラの位置と角度から見ることができ、任意の3D環境に合成することができる。
論文 参考訳(メタデータ) (2023-01-26T18:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。