論文の概要: Efficient4D: Fast Dynamic 3D Object Generation from a Single-view Video
- arxiv url: http://arxiv.org/abs/2401.08742v3
- Date: Mon, 22 Jul 2024 04:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 03:02:44.540214
- Title: Efficient4D: Fast Dynamic 3D Object Generation from a Single-view Video
- Title(参考訳): Efficient4D:シングルビュー映像からの高速ダイナミック3Dオブジェクト生成
- Authors: Zijie Pan, Zeyu Yang, Xiatian Zhu, Li Zhang,
- Abstract要約: 本稿では,効率的な4Dオブジェクト生成フレームワークであるEfficient4Dを提案する。
異なるカメラビューの下で高品質な時空一貫性の画像を生成し、ラベル付きデータとして使用する。
合成ビデオと実ビデオの両方の実験によると、Efficient4Dのスピードは10倍に向上している。
- 参考スコア(独自算出の注目度): 42.10482273572879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating dynamic 3D object from a single-view video is challenging due to the lack of 4D labeled data. An intuitive approach is to extend previous image-to-3D pipelines by transferring off-the-shelf image generation models such as score distillation sampling.However, this approach would be slow and expensive to scale due to the need for back-propagating the information-limited supervision signals through a large pretrained model. To address this, we propose an efficient video-to-4D object generation framework called Efficient4D. It generates high-quality spacetime-consistent images under different camera views, and then uses them as labeled data to directly reconstruct the 4D content through a 4D Gaussian splatting model. Importantly, our method can achieve real-time rendering under continuous camera trajectories. To enable robust reconstruction under sparse views, we introduce inconsistency-aware confidence-weighted loss design, along with a lightly weighted score distillation loss. Extensive experiments on both synthetic and real videos show that Efficient4D offers a remarkable 10-fold increase in speed when compared to prior art alternatives while preserving the quality of novel view synthesis. For example, Efficient4D takes only 10 minutes to model a dynamic object, vs 120 minutes by the previous art model Consistent4D.
- Abstract(参考訳): シングルビュービデオから動的3Dオブジェクトを生成するのは、4Dラベル付きデータがないため困難である。
直感的なアプローチは,従来のイメージ・ツー・3Dパイプラインを,スコア蒸留サンプリングなどのオフ・ザ・シェルフ画像生成モデルを転送することで拡張することである。
そこで本研究では,効率的な4Dオブジェクト生成フレームワークであるEfficient4Dを提案する。
異なるカメラビュー下で高品質な時空一貫性画像を生成し、ラベル付きデータとして使用し、4Dガウススプラッティングモデルにより4Dコンテンツを直接再構成する。
重要なこととして,本手法は連続カメラ軌道下でリアルタイムなレンダリングを実現することができる。
スパースビュー下でのロバストな再構築を実現するため,不整合性を考慮した信頼度重み付き損失設計と軽量なスコア蒸留損失を導入する。
合成ビデオと実ビデオの両方での大規模な実験により、エフィシエント4Dは、新しいビュー合成の質を保ちながら、先行技術に比べて10倍の速度で向上することが示された。
例えば、Efficient4Dは動的オブジェクトをモデル化するのに10分しかかからないが、以前のアートモデルであるConsistent4Dでは120分しかかからない。
関連論文リスト
- Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video [64.38566659338751]
Deblur4DGSという,ぼやけたモノクロビデオから高品質な4Dモデルを再構成するための,最初の4Dガウス分割フレームワークを提案する。
本稿では,多面的,多面的整合性,多面的,多面的,多面的な整合性を実現するために露光規則化を導入し,斬新な視点以外では,デブレア4DGSは,デブロアリング,フレーム合成,ビデオ安定化など,多面的な視点からぼやけた映像を改善するために応用できる。
論文 参考訳(メタデータ) (2024-12-09T12:02:11Z) - SV4D: Dynamic 3D Content Generation with Multi-Frame and Multi-View Consistency [37.96042037188354]
本稿では,多フレーム・多視点一貫した動的3Dコンテンツ生成のための遅延ビデオ拡散モデルであるStable Video 4D(SV4D)を提案する。
論文 参考訳(メタデータ) (2024-07-24T17:59:43Z) - EG4D: Explicit Generation of 4D Object without Score Distillation [105.63506584772331]
DG4Dは、スコア蒸留なしで高品質で一貫した4Dアセットを生成する新しいフレームワークである。
私たちのフレームワークは、世代品質のベースラインをかなりのマージンで上回ります。
論文 参考訳(メタデータ) (2024-05-28T12:47:22Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
高速でスケーラブルな4Dコンテンツ生成のための新しいフレームワーク textbfDiffusion4D を提案する。
ダイナミックな3Dアセットの軌道ビューを合成できる4D対応ビデオ拡散モデルを開発した。
提案手法は, 生成効率と4次元幾何整合性の観点から, 従来の最先端技術を超えている。
論文 参考訳(メタデータ) (2024-05-26T17:47:34Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
textbf4DGenは、4Dコンテンツ作成のための新しいフレームワークである。
我々のパイプラインは、制御可能な4D生成を容易にし、ユーザがモノクロビデオで動きを指定したり、画像から映像への世代を適用できる。
既存のビデオから4Dのベースラインと比較すると,入力信号の忠実な再構成には優れた結果が得られる。
論文 参考訳(メタデータ) (2023-12-28T18:53:39Z) - DreamGaussian4D: Generative 4D Gaussian Splatting [56.49043443452339]
DG4D(DreamGaussian 4D:DreamGaussian 4D)はGaussian Splatting(GS)をベースとした効率的な4D生成フレームワークである。
我々の重要な洞察は、空間変換の明示的なモデリングと静的GSを組み合わせることで、4次元生成の効率的かつ強力な表現ができるということである。
ビデオ生成手法は、高画質の4D生成を向上し、価値ある時空間前兆を提供する可能性がある。
論文 参考訳(メタデータ) (2023-12-28T17:16:44Z) - Consistent4D: Consistent 360{\deg} Dynamic Object Generation from
Monocular Video [15.621374353364468]
Consistent4Dは、モノクロビデオから4D動的オブジェクトを生成するための新しいアプローチである。
我々は、360度ダイナミックオブジェクト再構成を4次元生成問題として、退屈なマルチビューデータ収集とカメラキャリブレーションの必要性を排除した。
論文 参考訳(メタデータ) (2023-11-06T03:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。