論文の概要: SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction
- arxiv url: http://arxiv.org/abs/2407.17642v1
- Date: Wed, 24 Jul 2024 21:10:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:47:21.293203
- Title: SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction
- Title(参考訳): SMA-Hyper:交通事故予測のための時空間多視点融合ハイパーグラフ学習
- Authors: Xiaowei Gao, James Haworth, Ilya Ilyankou, Xianghui Zhang, Tao Cheng, Stephen Law, Huanfa Chen,
- Abstract要約: 現在のデータ駆動モデルは、しばしばデータ空間と多様な都市データソースの統合に苦しむ。
本稿では,交通事故予測のための動的学習フレームワークを提案する。
これは、高次のクロスリージョン学習を可能にするデュアル適応グラフ学習機構を組み込んでいる。
また、事故データと都市機能の複数のビューを融合させる事前注意機構も採用している。
- 参考スコア(独自算出の注目度): 2.807532512532818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting traffic accidents is the key to sustainable city management, which requires effective address of the dynamic and complex spatiotemporal characteristics of cities. Current data-driven models often struggle with data sparsity and typically overlook the integration of diverse urban data sources and the high-order dependencies within them. Additionally, they frequently rely on predefined topologies or weights, limiting their adaptability in spatiotemporal predictions. To address these issues, we introduce the Spatiotemporal Multiview Adaptive HyperGraph Learning (SMA-Hyper) model, a dynamic deep learning framework designed for traffic accident prediction. Building on previous research, this innovative model incorporates dual adaptive spatiotemporal graph learning mechanisms that enable high-order cross-regional learning through hypergraphs and dynamic adaptation to evolving urban data. It also utilises contrastive learning to enhance global and local data representations in sparse datasets and employs an advance attention mechanism to fuse multiple views of accident data and urban functional features, thereby enriching the contextual understanding of risk factors. Extensive testing on the London traffic accident dataset demonstrates that the SMA-Hyper model significantly outperforms baseline models across various temporal horizons and multistep outputs, affirming the effectiveness of its multiview fusion and adaptive learning strategies. The interpretability of the results further underscores its potential to improve urban traffic management and safety by leveraging complex spatiotemporal urban data, offering a scalable framework adaptable to diverse urban environments.
- Abstract(参考訳): 交通事故の予測は持続可能な都市管理の鍵であり、都市の動的かつ複雑な時空間特性を効果的に把握する必要がある。
現在のデータ駆動モデルは、しばしばデータ空間に苦しむが、通常、多様な都市データソースとそれらの中の高次依存関係の統合を見落としている。
さらに、事前に定義されたトポロジや重みにしばしば依存し、時空間予測における適応性を制限する。
これらの問題に対処するために,交通事故予測用に設計された動的ディープラーニングフレームワークである時空間多視点適応型ハイパーグラフ学習(SMA-Hyper)モデルを導入する。
従来の研究に基づいて、この革新的なモデルでは、ハイパーグラフによる高次クロスリージョン学習と、進化する都市データへの動的適応を可能にする、双対適応時空間グラフ学習機構が組み込まれている。
コントラスト学習を利用して、スパースデータセットにおけるグローバルデータとローカルデータの表現を強化し、事故データと都市機能の特徴の複数のビューを融合させる事前注意機構を用いて、リスク要因の文脈的理解を深める。
ロンドン交通事故データセットの大規模なテストでは、SMA-Hyperモデルは、様々な時間的地平線と多段階のアウトプットでベースラインモデルよりも大幅に優れており、マルチビュー融合と適応学習戦略の有効性が確認されている。
この結果の解釈可能性はさらに,複雑な時空間的都市データを活用し,多様な都市環境に適応可能なスケーラブルな枠組みを提供することにより,都市交通管理と安全性を向上させる可能性を示している。
関連論文リスト
- Online Location Planning for AI-Defined Vehicles: Optimizing Joint Tasks of Order Serving and Spatio-Temporal Heterogeneous Model Fine-Tuning [12.784479119173223]
車両群集センシング(VCS)は、車両の移動性とセンサーを装備した能力を活用する重要なイネーブラーとして登場した。
この研究は、エッジアシスト車両が注文サービスと基礎モデルの微調整のジョイントタスクを行う、有望なシナリオを探求する。
論文 参考訳(メタデータ) (2025-02-06T07:23:40Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
メタ学習型暗黙的ニューラル表現(INR)を利用した新しい協調的計算パラダイムを提案する。
次に,モデルに依存しないメタ学習による都市間協調学習手法を提案する。
20のグローバル都市から得られた多様な都市データセットの実験は、我々のモデルの優れた計算性能と一般化可能性を示している。
論文 参考訳(メタデータ) (2025-01-20T07:12:40Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - UrbanGPT: Spatio-Temporal Large Language Models [34.79169613947957]
本稿では,時空間エンコーダと命令調整パラダイムをシームレスに統合するUrbanPTを提案する。
我々は、様々な公開データセットに対して広範囲な実験を行い、異なる時間的予測タスクをカバーした。
結果は、慎重に設計されたアーキテクチャを持つUrbanPTが、最先端のベースラインを一貫して上回っていることを一貫して示しています。
論文 参考訳(メタデータ) (2024-02-25T12:37:29Z) - Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning
Approach [9.56255685195115]
モビリティ・プロファイリングは、モビリティ・データから都市交通の潜在的なパターンを抽出することができる。
デジタルツイン(DT)技術は、コスト効率とパフォーマンス最適化管理の道を開く。
本稿では,移動時ネットワークDTモデルを用いてノードプロファイルを学習するためのデジタルツインモビリティ・プロファイリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-06T06:37:43Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
本稿では,ハイブリッドトランスフォーマーと自己教師型学習を組み合わせたモデルを提案する。
このモデルは、トラフィックのシーケンスレベルにデータ拡張技術を適用することにより、適応的なデータ拡張を強化する。
本研究では,時間的および空間的依存をモデル化する2つの自己教師型学習タスクを設計し,モデルの精度と能力を向上させる。
論文 参考訳(メタデータ) (2024-01-29T06:17:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。