論文の概要: Mpox Detection Advanced: Rapid Epidemic Response Through Synthetic Data
- arxiv url: http://arxiv.org/abs/2407.17762v1
- Date: Thu, 25 Jul 2024 04:33:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:17:52.218419
- Title: Mpox Detection Advanced: Rapid Epidemic Response Through Synthetic Data
- Title(参考訳): Mpox Detection Advanced: Rapid Epidemic Response through Synthetic Data
- Authors: Yudara Kularathne, Prathapa Janitha, Sithira Ambepitiya, Prarththanan Sothyrajah, Thanveer Ahamed, Dinuka Wijesundara,
- Abstract要約: 本研究では, 総合的なコンピュータビジョンモデルを構築し, 合成データのみを用いてMpox病変を検出する手法を提案する。
高品質なトレーニングデータを作成する際の拡散モデルの有効性を評価するために,この合成データセットを用いて視覚モデルを訓練・試験した。
その結果、視覚モデルは97%の精度を達成し、96%の精度でMpoxのケースをリコールした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Rapid development of disease detection models using computer vision is crucial in responding to medical emergencies, such as epidemics or bioterrorism events. Traditional data collection methods are often too slow in these scenarios, requiring innovative approaches for quick, reliable model generation from minimal data. Our study introduces a novel approach by constructing a comprehensive computer vision model to detect Mpox lesions using only synthetic data. Initially, these models generated a diverse set of synthetic images representing Mpox lesions on various body parts (face, back, chest, leg, neck, arm) across different skin tones as defined by the Fitzpatrick scale (fair, brown, dark skin). Subsequently, we trained and tested a vision model with this synthetic dataset to evaluate the diffusion models' efficacy in producing high-quality training data and its impact on the vision model's medical image recognition performance. The results were promising; the vision model achieved a 97% accuracy rate, with 96% precision and recall for Mpox cases, and similarly high metrics for normal and other skin disorder cases, demonstrating its ability to correctly identify true positives and minimize false positives. The model achieved an F1-Score of 96% for Mpox cases and 98% for normal and other skin disorders, reflecting a balanced precision-recall relationship, thus ensuring reliability and robustness in its predictions. Our proposed SynthVision methodology indicates the potential to develop accurate computer vision models with minimal data input for future medical emergencies.
- Abstract(参考訳): コンピュータビジョンを用いた疾患検出モデルの迅速な開発は、疫病やバイオテロイベントなどの医学的緊急事態への対応に不可欠である。
従来のデータ収集手法はこれらのシナリオでは遅すぎることが多く、最小限のデータから高速で信頼性の高いモデル生成のための革新的なアプローチを必要とする。
本研究は, 総合的なコンピュータビジョンモデルを構築し, 合成データのみを用いてMpox病変を検出する手法を提案する。
当初、これらのモデルはフィッツパトリックスケール(フェア、ブラウン、ダークスキン)で定義される様々な肌の音色(顔、背中、胸、脚、首、腕)にMpoxの病変を表す多様な合成画像を生成した。
次に,この合成データセットを用いて視覚モデルを訓練し,高品質なトレーニングデータの作成における拡散モデルの有効性と,その医用画像認識性能への影響を評価する。
その結果、視覚モデルは97%の精度で、Mpoxの96%の精度とリコールを達成し、同様に正常および他の皮膚疾患の指標も高く、正の正を正しく識別し偽陽性を最小化する能力を示した。
このモデルは、Mpoxの96%、正常およびその他の皮膚疾患の98%のF1スコアを達成し、バランスの取れた精度とリコールの関係を反映し、予測の信頼性と堅牢性を確保した。
提案手法は,将来医療現場において最小限のデータ入力で正確なコンピュータビジョンモデルを開発する可能性を示している。
関連論文リスト
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
グラディエントブースティングモデル(GBM)は、トレーニング速度、解釈可能性、信頼性の点で、シーケンシャルモデルを上回った。
タイムリーな介入のために5分間の予測ウィンドウが選択された。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
論文 参考訳(メタデータ) (2024-10-30T23:24:28Z) - Incorporating Improved Sinusoidal Threshold-based Semi-supervised Method
and Diffusion Models for Osteoporosis Diagnosis [0.43512163406552007]
骨粗しょう症は、患者の生活の質に深刻な影響を及ぼす一般的な骨格疾患である。
従来の骨粗しょう症診断法は高価で複雑である。
本論文は, 有用性, 正確性, 低コストの利点を有する患者の画像データに基づいて, 骨粗しょう症を自動的に診断することができる。
論文 参考訳(メタデータ) (2024-03-11T08:11:46Z) - SynthVision -- Harnessing Minimal Input for Maximal Output in Computer
Vision Models using Synthetic Image data [0.0]
我々は,人工データのみを用いてヒトパピローマウイルス性器部を検出できる包括的コンピュータビジョンモデルを構築した。
F1スコアはHPVが96%、正常が97%であった。
論文 参考訳(メタデータ) (2024-02-05T09:18:49Z) - Symptom-based Machine Learning Models for the Early Detection of
COVID-19: A Narrative Review [0.0]
機械学習モデルは、患者の報告した症状、臨床データ、医療画像などを取り入れて、大規模なデータセットを分析することができる。
本稿では、その性能と限界を含む、COVID-19を予測するための症状のみの機械学習モデルの概要について概説する。
また、画像ベースモデルと比較して、症状ベースのモデルの性能についても検討する。
論文 参考訳(メタデータ) (2023-12-08T01:41:42Z) - Towards a Transportable Causal Network Model Based on Observational
Healthcare Data [1.333879175460266]
本稿では,選択図,不足グラフ,因果発見,事前知識を1つのグラフィカルモデルに組み合わせた新しい手法を提案する。
このモデルは、患者の2つの異なるコホートからなるデータから学習する。
結果として得られた因果ネットワークモデルは、リスク評価、正確性、説明可能性の観点から専門家臨床医によって検証される。
論文 参考訳(メタデータ) (2023-11-13T13:23:31Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
データから現実的な拡張を自動的に学習することは、生成モデルを用いてラベル効率の良い方法で可能であることを示す。
これらの学習の強化は、モデルをより堅牢で統計的に公平に配布できることを示した。
論文 参考訳(メタデータ) (2023-04-18T18:15:38Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。