Mpox Detection Advanced: Rapid Epidemic Response Through Synthetic Data
- URL: http://arxiv.org/abs/2407.17762v1
- Date: Thu, 25 Jul 2024 04:33:19 GMT
- Title: Mpox Detection Advanced: Rapid Epidemic Response Through Synthetic Data
- Authors: Yudara Kularathne, Prathapa Janitha, Sithira Ambepitiya, Prarththanan Sothyrajah, Thanveer Ahamed, Dinuka Wijesundara,
- Abstract summary: This study introduces a novel approach by constructing a comprehensive computer vision model to detect Mpox lesions using only synthetic data.
We trained and tested a vision model with this synthetic dataset to evaluate the diffusion models' efficacy in producing high-quality training data.
The results were promising; the vision model achieved a 97% accuracy rate, with 96% precision and recall for Mpox cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Rapid development of disease detection models using computer vision is crucial in responding to medical emergencies, such as epidemics or bioterrorism events. Traditional data collection methods are often too slow in these scenarios, requiring innovative approaches for quick, reliable model generation from minimal data. Our study introduces a novel approach by constructing a comprehensive computer vision model to detect Mpox lesions using only synthetic data. Initially, these models generated a diverse set of synthetic images representing Mpox lesions on various body parts (face, back, chest, leg, neck, arm) across different skin tones as defined by the Fitzpatrick scale (fair, brown, dark skin). Subsequently, we trained and tested a vision model with this synthetic dataset to evaluate the diffusion models' efficacy in producing high-quality training data and its impact on the vision model's medical image recognition performance. The results were promising; the vision model achieved a 97% accuracy rate, with 96% precision and recall for Mpox cases, and similarly high metrics for normal and other skin disorder cases, demonstrating its ability to correctly identify true positives and minimize false positives. The model achieved an F1-Score of 96% for Mpox cases and 98% for normal and other skin disorders, reflecting a balanced precision-recall relationship, thus ensuring reliability and robustness in its predictions. Our proposed SynthVision methodology indicates the potential to develop accurate computer vision models with minimal data input for future medical emergencies.
Related papers
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - Incorporating Improved Sinusoidal Threshold-based Semi-supervised Method
and Diffusion Models for Osteoporosis Diagnosis [0.43512163406552007]
Osteoporosis is a common skeletal disease that seriously affects patients' quality of life.
Traditional osteoporosis diagnosis methods are expensive and complex.
This paper can automatically diagnose osteoporosis based on patient's imaging data, which has the advantages of convenience, accuracy, and low cost.
arXiv Detail & Related papers (2024-03-11T08:11:46Z) - SynthVision -- Harnessing Minimal Input for Maximal Output in Computer
Vision Models using Synthetic Image data [0.0]
We build a comprehensive computer vision model for detecting Human Papilloma Virus Genital warts using only synthetic data.
The model achieved an F1 Score of 96% for HPV cases and 97% for normal cases.
arXiv Detail & Related papers (2024-02-05T09:18:49Z) - Symptom-based Machine Learning Models for the Early Detection of
COVID-19: A Narrative Review [0.0]
Machine learning models can analyze large datasets, incorporating patient-reported symptoms, clinical data, and medical imaging.
In this paper, we provide an overview of the landscape of symptoms-only machine learning models for predicting COVID-19, including their performance and limitations.
The review will also examine the performance of symptom-based models when compared to image-based models.
arXiv Detail & Related papers (2023-12-08T01:41:42Z) - Towards a Transportable Causal Network Model Based on Observational
Healthcare Data [1.333879175460266]
We propose a novel approach that combines selection diagrams, missingness graphs, causal discovery and prior knowledge into a single graphical model.
We learn this model from data comprising two different cohorts of patients.
The resulting causal network model is validated by expert clinicians in terms of risk assessment, accuracy and explainability.
arXiv Detail & Related papers (2023-11-13T13:23:31Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
We show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models.
We demonstrate that these learned augmentations can surpass ones by making models more robust and statistically fair in- and out-of-distribution.
arXiv Detail & Related papers (2023-04-18T18:15:38Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.