Enhancing clinical decision support with physiological waveforms -- a multimodal benchmark in emergency care
- URL: http://arxiv.org/abs/2407.17856v4
- Date: Wed, 30 Apr 2025 21:32:54 GMT
- Title: Enhancing clinical decision support with physiological waveforms -- a multimodal benchmark in emergency care
- Authors: Juan Miguel Lopez Alcaraz, Hjalmar Bouma, Nils Strodthoff,
- Abstract summary: We present a dataset and benchmarking protocol designed to advance multimodal decision support in emergency care.<n>Our models utilize demographics, biometrics, vital signs, laboratory values, and electrocardiogram (ECG) waveforms as inputs to predict both discharge diagnoses and patient deterioration.
- Score: 0.9503773054285559
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: AI-driven prediction algorithms have the potential to enhance emergency medicine by enabling rapid and accurate decision-making regarding patient status and potential deterioration. However, the integration of multimodal data, including raw waveform signals, remains underexplored in clinical decision support. Methods: We present a dataset and benchmarking protocol designed to advance multimodal decision support in emergency care. Our models utilize demographics, biometrics, vital signs, laboratory values, and electrocardiogram (ECG) waveforms as inputs to predict both discharge diagnoses and patient deterioration. Results: The diagnostic model achieves area under the receiver operating curve (AUROC) scores above 0.8 for 609 out of 1,428 conditions, covering both cardiac (e.g., myocardial infarction) and non-cardiac (e.g., renal disease, diabetes) diagnoses. The deterioration model attains AUROC scores above 0.8 for 14 out of 15 targets, accurately predicting critical events such as cardiac arrest, mechanical ventilation, ICU admission, and mortality. Conclusions: Our study highlights the positive impact of incorporating raw waveform data into decision support models, improving predictive performance. By introducing a unique, publicly available dataset and baseline models, we provide a foundation for measurable progress in AI-driven decision support for emergency care.
Related papers
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.
We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.
We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.
Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.
In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.
Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - A multi-cohort study on prediction of acute brain dysfunction states
using selective state space models [12.0129301272171]
acute brain dysfunction (ABD) is a critical challenge due to its prevalence and severe implications for patient outcomes.
Our research attempts to solve these problems by harnessing Electronic Health Records (EHR) data.
Existing models solely predict a single state (e.g., either delirium or coma) require at least 24 hours of observation data to make predictions.
Our research fills these gaps in the existing literature by dynamically predicting delirium, coma, mortality and fluctuating for 12-hour intervals throughout an ICU stay.
arXiv Detail & Related papers (2024-03-11T22:58:11Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Predicting multiple sclerosis disease severity with multimodal deep
neural networks [10.599189568556508]
We describe a pilot effort to leverage structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient's MS disease severity.
The proposed pipeline demonstrates up to 25% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data.
arXiv Detail & Related papers (2023-04-08T16:23:18Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
Peritoneal Dialysis (PD) is one of the most widely used life-supporting therapies for patients with End-Stage Renal Disease (ESRD)
Here, our objective is to develop a deep learning model for a real-time, individualized, and interpretable mortality prediction model - AICare.
This study has collected 13,091 clinical follow-up visits and demographic data of 656 PD patients.
arXiv Detail & Related papers (2023-01-17T13:17:54Z) - Multimodal spatiotemporal graph neural networks for improved prediction
of 30-day all-cause hospital readmission [4.609543591101764]
We propose a multimodal, modality-agnostic graph neural network (MM-STGNN) for prediction of 30-day all-cause hospital readmission.
MM-STGNN achieves AU of 0.79 on both primary and external datasets.
For subset populations of patients with heart and vascular disease, our model also outperforms baselines on predicting 30-day readmission.
arXiv Detail & Related papers (2022-04-14T05:50:07Z) - Towards dynamic multi-modal phenotyping using chest radiographs and
physiological data [3.11179491890629]
We propose a dynamic training approach to learn modality-specific data representations and to integrate auxiliary features.
Preliminary experiments results for a patient phenotyping task using physiological data in MIMIC-IV & chest radiographs in the MIMIC- CXR dataset.
This illustrates the benefit of leveraging the chest imaging modality in the phenotyping task and highlights the potential of multi-modal learning in medical applications.
arXiv Detail & Related papers (2021-11-04T09:41:00Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
This work presents an explainability analysis and evaluation of a prediction model for heart failure survival.
The model employs a data workflow pipeline able to select the best ensemble tree algorithm as well as the best feature selection technique.
The paper's main contribution is an explainability-driven approach to select the best prediction model for HF survival based on an accuracy-explainability balance.
arXiv Detail & Related papers (2021-08-20T09:03:26Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.