Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence
- URL: http://arxiv.org/abs/2108.10717v1
- Date: Fri, 20 Aug 2021 09:03:26 GMT
- Title: Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence
- Authors: Pedro A. Moreno-Sanchez
- Abstract summary: This work presents an explainability analysis and evaluation of a prediction model for heart failure survival.
The model employs a data workflow pipeline able to select the best ensemble tree algorithm as well as the best feature selection technique.
The paper's main contribution is an explainability-driven approach to select the best prediction model for HF survival based on an accuracy-explainability balance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiovascular diseases and their associated disorder of heart failure are
one of the major death causes globally, being a priority for doctors to detect
and predict its onset and medical consequences. Artificial Intelligence (AI)
allows doctors to discover clinical indicators and enhance their diagnosis and
treatments. Specifically, explainable AI offers tools to improve the clinical
prediction models that experience poor interpretability of their results. This
work presents an explainability analysis and evaluation of a prediction model
for heart failure survival by using a dataset that comprises 299 patients who
suffered heart failure. The model employs a data workflow pipeline able to
select the best ensemble tree algorithm as well as the best feature selection
technique. Moreover, different post-hoc techniques have been used for the
explainability analysis of the model. The paper's main contribution is an
explainability-driven approach to select the best prediction model for HF
survival based on an accuracy-explainability balance. Therefore, the most
balanced explainable prediction model implements an Extra Trees classifier over
5 selected features (follow-up time, serum creatinine, ejection fraction, age
and diabetes) out of 12, achieving a balanced-accuracy of 85.1% and 79.5% with
cross-validation and new unseen data respectively. The follow-up time is the
most influencing feature followed by serum-creatinine and ejection-fraction.
The explainable prediction model for HF survival presented in this paper would
improve a further adoption of clinical prediction models by providing doctors
with intuitions to better understand the reasoning of, usually, black-box AI
clinical solutions, and make more reasonable and data-driven decisions.
Related papers
- A data balancing approach towards design of an expert system for Heart Disease Prediction [0.9895793818721335]
Heart disease is a serious global health issue that claims millions of lives every year.
We employed five machine learning methods in this paper: Decision Tree (DT), Random Forest (RF), Linear Discriminant Analysis, Extra TreeBoost, and AdaBoost.
The accuracy of the Random Forest and Decision Tree model was 99.83%.
arXiv Detail & Related papers (2024-07-26T08:56:13Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Explainable AI for Malnutrition Risk Prediction from m-Health and
Clinical Data [3.093890460224435]
This paper presents a novel AI framework for early and explainable malnutrition risk detection based on heterogeneous m-health data.
We performed an extensive model evaluation including both subject-independent and personalised predictions.
We also investigated several benchmark XAI methods to extract global model explanations.
arXiv Detail & Related papers (2023-05-31T08:07:35Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
We introduce techniques to help bridge this gap between EBM and AI-based clinical models.
We propose a novel system that automatically retrieves patient-specific literature based on intensive care (ICU) patient information.
Our model is able to substantially boost predictive accuracy on three challenging tasks in comparison to strong recent baselines.
arXiv Detail & Related papers (2021-11-16T11:19:02Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Gradient Boosting on Decision Trees for Mortality Prediction in
Transcatheter Aortic Valve Implantation [5.050648346154715]
Current prognostic risk scores in cardiac surgery are based on statistics and do not yet benefit from machine learning.
This research aims to create a machine learning model to predict one-year mortality of a patient after TAVI.
arXiv Detail & Related papers (2020-01-08T10:04:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.