Is the Digital Forensics and Incident Response Pipeline Ready for Text-Based Threats in LLM Era?
- URL: http://arxiv.org/abs/2407.17870v1
- Date: Thu, 25 Jul 2024 08:42:53 GMT
- Title: Is the Digital Forensics and Incident Response Pipeline Ready for Text-Based Threats in LLM Era?
- Authors: Avanti Bhandarkar, Ronald Wilson, Anushka Swarup, Mengdi Zhu, Damon Woodard,
- Abstract summary: In the era of generative AI, the widespread adoption of Neural Text Generators (NTGs) presents new cybersecurity challenges.
This paper rigorously evaluates the DFIR pipeline tailored for text-based security systems.
By introducing a novel human-NTG co-authorship text attack, our study uncovers significant vulnerabilities in traditional DFIR methodologies.
- Score: 3.3205885925042704
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the era of generative AI, the widespread adoption of Neural Text Generators (NTGs) presents new cybersecurity challenges, particularly within the realms of Digital Forensics and Incident Response (DFIR). These challenges primarily involve the detection and attribution of sources behind advanced attacks like spearphishing and disinformation campaigns. As NTGs evolve, the task of distinguishing between human and NTG-authored texts becomes critically complex. This paper rigorously evaluates the DFIR pipeline tailored for text-based security systems, specifically focusing on the challenges of detecting and attributing authorship of NTG-authored texts. By introducing a novel human-NTG co-authorship text attack, termed CS-ACT, our study uncovers significant vulnerabilities in traditional DFIR methodologies, highlighting discrepancies between ideal scenarios and real-world conditions. Utilizing 14 diverse datasets and 43 unique NTGs, up to the latest GPT-4, our research identifies substantial vulnerabilities in the forensic profiling phase, particularly in attributing authorship to NTGs. Our comprehensive evaluation points to factors such as model sophistication and the lack of distinctive style within NTGs as significant contributors for these vulnerabilities. Our findings underscore the necessity for more sophisticated and adaptable strategies, such as incorporating adversarial learning, stylizing NTGs, and implementing hierarchical attribution through the mapping of NTG lineages to enhance source attribution. This sets the stage for future research and the development of more resilient text-based security systems.
Related papers
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Navigating the Shadows: Unveiling Effective Disturbances for Modern AI Content Detectors [24.954755569786396]
AI-text detection has emerged to distinguish between human and machine-generated content.
Recent research indicates that these detection systems often lack robustness and struggle to effectively differentiate perturbed texts.
Our work simulates real-world scenarios in both informal and professional writing, exploring the out-of-the-box performance of current detectors.
arXiv Detail & Related papers (2024-06-13T08:37:01Z) - Intruding with Words: Towards Understanding Graph Injection Attacks at the Text Level [21.003091265006102]
Graph Neural Networks (GNNs) excel across various applications but remain vulnerable to adversarial attacks.
In this paper, we pioneer the exploration of Graph Injection Attacks (GIAs) at the text level.
We show that text interpretability, a factor previously overlooked at the embedding level, plays a crucial role in attack strength.
arXiv Detail & Related papers (2024-05-26T02:12:02Z) - Decoding the AI Pen: Techniques and Challenges in Detecting AI-Generated Text [4.927763944523323]
Large Language Models (LLMs) have revolutionized the field of Natural Language Generation (NLG) by demonstrating an impressive ability to generate human-like text.
However, their widespread usage introduces challenges that necessitate thoughtful examination, ethical scrutiny, and responsible practices.
arXiv Detail & Related papers (2024-03-09T01:13:54Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of
GPT-Generated Text [82.5469544192645]
We propose a novel training-free detection strategy called Divergent N-Gram Analysis (DNA-GPT)
By analyzing the differences between the original and new remaining parts through N-gram analysis, we unveil significant discrepancies between the distribution of machine-generated text and human-written text.
Results show that our zero-shot approach exhibits state-of-the-art performance in distinguishing between human and GPT-generated text.
arXiv Detail & Related papers (2023-05-27T03:58:29Z) - G3Detector: General GPT-Generated Text Detector [26.47122201110071]
We introduce an unpretentious yet potent detection approach proficient in identifying synthetic text across a wide array of fields.
Our detector demonstrates outstanding performance uniformly across various model architectures and decoding strategies.
It also possesses the capability to identify text generated utilizing a potent detection-evasion technique.
arXiv Detail & Related papers (2023-05-22T03:35:00Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation.
The rapid rate and volume of data creation has begun to pose significant challenges for data management and security.
The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance.
arXiv Detail & Related papers (2020-05-23T20:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.