Pseudomode treatment of strong-coupling quantum thermodynamics
- URL: http://arxiv.org/abs/2407.17886v1
- Date: Thu, 25 Jul 2024 09:11:45 GMT
- Title: Pseudomode treatment of strong-coupling quantum thermodynamics
- Authors: Francesco Albarelli, Bassano Vacchini, Andrea Smirne,
- Abstract summary: The evaluation of thermodynamic quantities in strong-coupling regimes requires a nonperturbative knowledge of the bath dynamics.
We derive expressions for heat, work, and average system-bath interaction energy that only involve the autocorrelation function of the bath.
We show in particular that this method allows for an efficient numerical evaluation of thermodynamic quantities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The treatment of quantum thermodynamic systems beyond weak coupling is of increasing relevance, yet extremely challenging. The evaluation of thermodynamic quantities in strong-coupling regimes requires a nonperturbative knowledge of the bath dynamics, which in turn relies on heavy numerical simulations. To tame these difficulties, considering thermal bosonic baths linearly coupled to the open system, we derive expressions for heat, work, and average system-bath interaction energy that only involve the autocorrelation function of the bath and two-time expectation values of system operators. We then exploit the pseudomode approach, which replaces the physical continuous bosonic bath with a small finite number of damped, possibly interacting, modes, to numerically evaluate these relevant thermodynamic quantities. We show in particular that this method allows for an efficient numerical evaluation of thermodynamic quantities in terms of one-time expectation values of the open system and the pseudomodes. We apply this framework to the investigation of two paradigmatic situations. In the first instance, we study the entropy production for a two-level system coupled to an ohmic bath, simulated via interacting pseudomodes, allowing for the presence of time-dependent driving. Secondly, we consider a quantum thermal machine composed of a two-level system interacting with two thermal baths at different temperatures, showing that an appropriate sinusoidal modulation of the coupling with the cold bath only is enough to obtain work extraction.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Quantum Thermodynamics of Open Quantum Systems: Nature of Thermal Fluctuations [0.0]
We investigate the thermodynamic behavior of open quantum systems through the Hamiltonian of Mean Force.
By analyzing both weak and strong coupling regimes, we uncover the impact of environmental interactions on quantum thermodynamic quantities.
arXiv Detail & Related papers (2024-07-31T13:18:06Z) - Entropy production in the mesoscopic-leads formulation of quantum thermodynamics [0.0]
entropy production of systems strongly coupled to thermal baths is a core problem of quantum thermodynamics and mesoscopic physics.
Recently, the mesoscopic leads approach has emerged as a powerful method for studying such quantum systems strongly coupled to multiple thermal baths.
We show numerically, that a system coupled to a single bath exhibits a thermal fixed point at the level of the embedding.
arXiv Detail & Related papers (2023-12-19T19:00:04Z) - Finite-time quantum Otto engine with a squeezed thermal bath: Role of
quantum coherence and squeezing in the performance and fluctuations [7.533259024252197]
We consider a finite-time quantum Otto heat engine that consists of two isochoric (thermal-contact) process.
We derive the analytical expressions for the thermodynamic quantities of the two-level heat engine.
Our results clarify the role of coherence and squeezing in the performance and fluctuations in the quantum Otto engines.
arXiv Detail & Related papers (2022-05-26T12:07:51Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Driven quantum harmonic oscillators: A working medium for thermal
machines [0.0]
We consider a working substance that is permanently coupled to two or more baths at different temperatures and continuously driven.
We derive the heat flows and power of the working device which can operate as an engine, refrigerator or accelerator.
An increased driving frequency can lead to a change of functioning to a dissipator.
arXiv Detail & Related papers (2021-08-25T16:53:45Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Quantum thermodynamics of two bosonic systems [0.0]
We study the energy exchange between two bosonic systems that interact via bilinear transformations in the mode operators.
This work finds its roots in a very recent formulation of quantum thermodynamics.
arXiv Detail & Related papers (2020-01-14T09:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.