論文の概要: 3D Hole Filling using Deep Learning Inpainting
- arxiv url: http://arxiv.org/abs/2407.17896v1
- Date: Thu, 25 Jul 2024 09:36:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:38:10.798098
- Title: 3D Hole Filling using Deep Learning Inpainting
- Title(参考訳): ディープラーニングインペインティングによる3次元穴埋め
- Authors: Marina Hernández-Bautista, F. J. Melero,
- Abstract要約: 本稿では,ニューラルネットワークによる2Dインペインティングを組み込んで3次元表面を効果的に再構築する手法を提案する。
カスタマイズされたニューラルネットワークは、100万以上の曲率画像を含むデータセットでトレーニングされました。
この戦略により,入力データからパターンの学習と一般化が可能となり,正確な3次元表面の開発が可能となった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The current work presents a novel methodology for completing 3D surfaces produced from 3D digitization technologies in places where there is a scarcity of meaningful geometric data. Incomplete or missing data in these three-dimensional (3D) models can lead to erroneous or flawed renderings, limiting their usefulness in a variety of applications such as visualization, geometric computation, and 3D printing. Conventional surface estimation approaches often produce implausible results, especially when dealing with complex surfaces. To address this issue, we propose a technique that incorporates neural network-based 2D inpainting to effectively reconstruct 3D surfaces. Our customized neural networks were trained on a dataset containing over 1 million curvature images. These images show the curvature of vertices as planar representations in 2D. Furthermore, we used a coarse-to-fine surface deformation technique to improve the accuracy of the reconstructed pictures and assure surface adaptability. This strategy enables the system to learn and generalize patterns from input data, resulting in the development of precise and comprehensive three-dimensional surfaces. Our methodology excels in the shape completion process, effectively filling complex holes in three-dimensional surfaces with a remarkable level of realism and precision.
- Abstract(参考訳): 本研究は,有意な幾何学的データが不足している場所での3次元ディジタル化技術から生成された3次元表面を仕上げるための新しい手法を提案する。
これらの3次元モデルにおける不完全または欠落したデータは、誤ったあるいは欠陥のあるレンダリングにつながり、可視化、幾何計算、および3Dプリンティングなどの様々なアプリケーションで有用性を制限する。
従来の表面推定手法は、特に複素曲面を扱う場合、しばしば不明瞭な結果をもたらす。
この問題に対処するために,ニューラルネットワークをベースとした2Dインペインティングを組み込んで3次元表面を効果的に再構築する手法を提案する。
カスタマイズされたニューラルネットワークは、100万以上の曲率画像を含むデータセットでトレーニングされました。
これらの画像は2次元の平面表現として頂点の曲率を示す。
さらに, 粗面変形法を用いて, 再構成画像の精度向上と表面適応性確保を行った。
この戦略により,入力データからパターンの学習と一般化が可能となり,正確な3次元表面の開発が可能となった。
本手法は形状完成過程に優れ,三次元表面の複雑な穴を顕著なリアリズムと精度で効果的に埋める。
関連論文リスト
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - MV2Cyl: Reconstructing 3D Extrusion Cylinders from Multi-View Images [13.255044855902408]
2次元多視点画像から3次元を再構成する新しい手法であるMV2Cylを提案する。
本研究では,2次元スケッチと抽出パラメータ推定において最適な精度で最適な再構成結果を得る。
論文 参考訳(メタデータ) (2024-06-16T08:54:38Z) - Normal-guided Detail-Preserving Neural Implicit Functions for High-Fidelity 3D Surface Reconstruction [6.4279213810512665]
RGBまたはRGBD画像からニューラル暗黙表現を学習する現在の方法は、欠落した部分と詳細を持つ3D曲面を生成する。
本稿では,1次微分特性を持つニューラル表現のトレーニング,すなわち表面正規化が,高精度な3次元表面再構成をもたらすことを示す。
論文 参考訳(メタデータ) (2024-06-07T11:48:47Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
我々は、GAN(Generative Adversarial Networks)とDCNN(Deep Convolutional Neural Networks)の力を利用して、単一画像から顔のテクスチャと形状を再構築する。
3次元顔再構成を保存したフォトリアリスティックでアイデンティティに優れた結果を示し, 初めて, 高精度な顔テクスチャ再構成を実現する。
論文 参考訳(メタデータ) (2021-05-16T16:35:44Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - Multiview Neural Surface Reconstruction by Disentangling Geometry and
Appearance [46.488713939892136]
我々は、未知の幾何学、カメラパラメータ、および表面からカメラに向かって反射された光を近似するニューラルネットワークを同時に学習するニューラルネットワークを導入する。
我々は、DTU MVSデータセットから、異なる素材特性、照明条件、ノイズの多いカメラ素材を実世界の2D画像でトレーニングした。
論文 参考訳(メタデータ) (2020-03-22T10:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。