論文の概要: Keep the Cost Down: A Review on Methods to Optimize LLM' s KV-Cache Consumption
- arxiv url: http://arxiv.org/abs/2407.18003v1
- Date: Thu, 25 Jul 2024 12:56:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:08:56.329094
- Title: Keep the Cost Down: A Review on Methods to Optimize LLM' s KV-Cache Consumption
- Title(参考訳): コストを下げ続ける - LLMのKVキャッシュ消費を最適化する方法のレビュー
- Authors: Shi Luohe, Zhang Hongyi, Yao Yao, Li Zuchao, Zhao Hai,
- Abstract要約: 大規模言語モデル(LLM)は、先進的な言語理解によって様々な産業に革命をもたらした。
KV-Cacheはこの問題の重要解として現れ、トークン生成の時間的複雑さを2次から線形に変換する。
本稿では、KVキャッシュの諸特性を解析し、現在LLMのKVキャッシュ空間利用を最適化するために使われている様々な手法について詳述する。
- 参考スコア(独自算出の注目度): 2.9838814008386176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs), epitomized by ChatGPT' s release in late 2022, have revolutionized various industries with their advanced language comprehension. However, their efficiency is challenged by the Transformer architecture' s struggle with handling long texts. KV-Cache has emerged as a pivotal solution to this issue, converting the time complexity of token generation from quadratic to linear, albeit with increased GPU memory overhead proportional to conversation length. With the development of the LLM community and academia, various KV-Cache compression methods have been proposed. In this review, we dissect the various properties of KV-Cache and elaborate on various methods currently used to optimize the KV-Cache space usage of LLMs. These methods span the pre-training phase, deployment phase, and inference phase, and we summarize the commonalities and differences among these methods. Additionally, we list some metrics for evaluating the long-text capabilities of large language models, from both efficiency and capability perspectives. Our review thus sheds light on the evolving landscape of LLM optimization, offering insights into future advancements in this dynamic field.
- Abstract(参考訳): 2022年末にChatGPTがリリースした大規模言語モデル(LLM)は、先進的な言語理解によって様々な産業に革命をもたらした。
しかし、その効率性はTransformerアーキテクチャの長文処理に苦慮しているため、課題となる。
KV-Cacheは、会話の長さに比例したGPUメモリオーバーヘッドの増加にもかかわらず、2次から線形へのトークン生成の時間的複雑さを変換する、この問題に対する重要なソリューションとして登場した。
LLMコミュニティとアカデミアの発展に伴い、様々なKVキャッシュ圧縮手法が提案されている。
本稿では、KVキャッシュの諸特性を解析し、現在LLMのKVキャッシュ空間利用を最適化するために使われている様々な手法について詳述する。
これらの手法は, 事前学習フェーズ, 展開フェーズ, 推論フェーズにまたがっており, これらの手法の共通点と相違点を要約する。
さらに、効率性と能力の観点から、大規模言語モデルの長文能力を評価するための指標をいくつか挙げる。
本稿では, LLM最適化の進化する展望を概観し, このダイナミックな分野における今後の進歩について考察する。
関連論文リスト
- Farewell to Length Extrapolation, a Training-Free Infinite Context with Finite Attention Scope [68.10585571422929]
LongCacheは、LLMが有限コンテキストスコープで無限コンテキストをサポートすることができるトレーニング不要のアプローチである。
我々はLongBenchとL-EvalでLongCacheを検証し、その性能が従来のフルアテンション機構と同等であることを実証した。
GPUを意識した最適化によって,LongCacheの効率性も近く向上します。
論文 参考訳(メタデータ) (2024-07-21T14:23:37Z) - KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches [49.43759617227999]
長期の文脈能力は、大規模言語モデル(LLM)にとって重要な能力である
この研究は、現在の手法の分類を提供し、長いコンテキストタスクの7つのカテゴリにまたがる10以上の最先端のアプローチを評価する。
論文 参考訳(メタデータ) (2024-07-01T17:59:47Z) - UIO-LLMs: Unbiased Incremental Optimization for Long-Context LLMs [111.12010207132204]
UIO-LLMsは、長いコンテキスト設定下でのメモリ拡張トランスフォーマーの漸進的な最適化手法である。
本稿では,TBPTTアルゴリズムを用いて学習過程を改良する。
UIO-LLMは、Llama2-7b-chatのコンテキストウィンドウを4Kから100Kトークンに、2%の追加パラメータで拡張するなど、長いコンテキストを扱うことに成功した。
論文 参考訳(メタデータ) (2024-06-26T08:44:36Z) - LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference [32.20654044142376]
LOOK-Mは、マルチモーダルKVキャッシュサイズを効率的に削減する、先駆的で微調整のないアプローチである。
最大1.5倍高速なデコードを実現し、また、様々な長いコンテキストマルチモーダルタスクのパフォーマンスを維持または強化する。
論文 参考訳(メタデータ) (2024-06-26T07:44:24Z) - Layer-Condensed KV Cache for Efficient Inference of Large Language Models [44.24593677113768]
少数の層のKVのみを計算・キャッシュする新しい手法を提案する。
提案手法は標準変圧器よりも最大26$times$高いスループットを実現する。
論文 参考訳(メタデータ) (2024-05-17T08:59:46Z) - Efficient LLM Inference with Kcache [3.945956673130761]
大規模言語モデル(LLM)はAIアプリケーションに大きな影響を与えている。
KVキャッシュ技術は業界で最も広く使われている技術の一つである。
本稿では,LLM 推論プロセスにおけるメモリボトルネック問題を軽減するため,新しい KCache 手法を提案する。
論文 参考訳(メタデータ) (2024-04-28T03:11:42Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [86.91360597169563]
MAC(Memory of Amortized Contexts)は、大規模言語モデルのための効率的かつ効果的なオンライン適応フレームワークである。
本稿では,新しい文書から情報を圧縮・抽出するメモリ拡張手法を提案する。
実験では,オンライン適応性能,時間,メモリ効率など,MACの複数の面での優位性を実証した。
論文 参考訳(メタデータ) (2024-03-07T08:34:57Z) - Advancing Transformer Architecture in Long-Context Large Language
Models: A Comprehensive Survey [18.930417261395906]
トランスフォーマーベースの大規模言語モデル(LLM)は、知識ベース、ヒューマンインタフェース、動的エージェントなど様々な分野に適用されている。
本稿では,トランスフォーマーをベースとしたLLMアーキテクチャの最近の進歩について,LLMの長期的コンテキスト能力の向上を目的とした調査を行う。
論文 参考訳(メタデータ) (2023-11-21T04:59:17Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoTは並列デコーディングに基づくモデルに依存しないフレームワークである。
我々は、FastCoTが通常のアプローチと比較して、無視できる性能低下だけで、推論時間を20%近く削減できることを示します。
論文 参考訳(メタデータ) (2023-11-14T15:56:18Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
In-context Autoencoder (ICAE) を提案し、長いコンテキストを短いメモリスロットに圧縮する。
ICAEは、大量のテキストデータに基づく自動符号化と言語モデリングの両方の目的を用いて、まず事前訓練を行う。
論文 参考訳(メタデータ) (2023-07-13T17:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。